K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Phương pháp: sử dụng công thức tính khoảng vân , số vân sáng trong miền giao thoa L

Cách giải:

Khoảng vân tương ứng với hai bức xạ lần lượt là:

Để tìm số vân sáng trùng nhau ta coi như hệ giao thoa của 1 ánh sáng có khoảng vân là:

Trong miền giao thoa có bề rộng L = 7,68mm có số vân sáng trùng nhau là:

Đáp án C

26 tháng 5 2019

Chọn đáp án C

2 tháng 10 2017

Đáp án C

Khoảng vân tương ứng với hai bức xạ lần lượt là:

Để tìm số vân sáng trùng nhau ta coi như hệ giao thoa của 1 ánh sáng có khoảng vân là:

Trong miền giao thoa có bề rộng L = 7,68mm có số vân sáng trùng nhau là:

 

4 tháng 1 2020

- Khoảng vân tương ứng với hai bức xạ lần lượt là:

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Để tìm số vân sáng trùng nhau ta coi như hệ giao thoa của 1 ánh sáng có khoảng vân là:

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Trong miền giao thoa có bề rộng L = 7,68mm có số vân sáng trùng nhau là:

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

29 tháng 1 2015

Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)

\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)

\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)

Thay vào (1) \(x_T=5i_1=4i_2\)

Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)

Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ­2.     

Đáp án A.

29 tháng 1 2015

\(i_1 = \frac{\lambda_1D_1}{a}\)

\(i_2 = \frac{\lambda_2D_2}{a}\)

=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)

=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))

=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)

Chọn đáp án.A

12 tháng 6 2016

\(i_1=\dfrac{\lambda_1.D}{a}=1,2mm\)

Số vân sáng  của i1 là: \(|\dfrac{24}{2.1,2}|.2+1=21\)

Số vân sáng của i2 là: \(33+5-21=17\)

\(\Rightarrow i_1=1,5mm\)

\(\Rightarrow \lambda_2=0,75\mu m\)

24 tháng 1 2019

Có thể làm rõ hơn ko ạ???

O
ongtho
Giáo viên
23 tháng 1 2016

Giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm có 8 vân sáng màu lục tức là khoảng cách đó là \(\Delta x _{min}= 9i_{lục}.\)

=> \(9i_{lục}= k_2 i_{đỏ}=> 9\lambda_{lục}= k_2 \lambda_{đỏ}\)

=> \(\lambda_{lục} = \frac{k_2 \lambda_{đỏ}}{9}.\ \ (1)\)

                Mà       \(500 n m \leq \lambda_{lục} \leq 575nm.\)

Thay (1) vào <=> \(500 n m \leq \frac{k_2 \lambda_{đỏ}}{9} \leq 575nm.\)

<=> \(\frac{500.9}{720} \leq k_2 \leq \frac{575.9}{720}\)

<=> \(6,25 \leq k_2 \leq 7,1875\)

=> \(k_2 = 7=> (1): \lambda_{lục} = 560nm.\)

 

23 tháng 1 2016

 720nm = 0,72 μm 

giữa 2 vân sáng gần nhau nhất và cùng màu vs vân sáng trung tâm có 8 vân sáng màu lục => Tại vị trí trùng đó là VS bậc 9 của λlục 

Tại VT trùng nhau: x_kđỏ = x_9lục 
<=> kđỏ.λđỏ = 9.λlục 
<=> kđỏ/9 = λlục/λđỏ = λ/0,72 
=> λ = (0,72.kđỏ)/9 = 0,08.kđỏ (*) 

0,5 ≤ λ = 0,08.kđỏ ≤ 0,575 μm 
6,25 ≤ kđỏ ≤ 7,1875 
=> kđỏ = 7 
thế vào (*) λ = 0,56 (μm) = 560nm

đáp án : D

4 tháng 6 2016

Ta có \(\dfrac{i_1}{i_2}=\dfrac{4}{5}\)

Nên chọn \(\begin{cases}i_1=4i \\ i_2=5i \end{cases}\) \(\Rightarrow i_{\equiv }=20i\)

Tại vị trí \(x_1= 0,5i_1=2i; x_2=12,5i_1=50i\) 

Nên số vân trùng thỏa mãn: \(2i < k.20i < 50i\)

Có 2 giá trị k thỏa mãn là: k = 1 hoặc k = 2.

Vậy có 2 vân trùng,

Chọn đáp án B.

O
ongtho
Giáo viên
23 tháng 1 2016

Đổi đơn vị: \(\lambda_1=450n m= 0,45 \mu m.\)

                    \(\lambda_1=600n m= 0,6 \mu m.\)

Hai vân sáng trùng nhau khi \(k_1i_1=k_2i_2 \)

<=> \(\frac{k_1}{k_2}= \frac{i_1}{i_2}=>\frac{k_1}{k_2}= \frac{\lambda_1}{\lambda_2} =\frac{3}{4}\ \ (*)\)

Xét trong đoạn MN nên \(5,5 mm \leq x_s \leq 22mm. \)

                               <=> \(5,5 mm \leq k_1\frac{\lambda_1 D}{a} \leq 22mm. \)

                               <=> \(\frac{5,5.a}{\lambda_1 D} \leq k_1\leq \frac{22.a}{\lambda_1 D}\)

Giữ nguyên đơn vị của a = 0,5 mm; D = 2m; \(\lambda_1=0,45 \mu m.\)

                             <=> \(3,055 \leq k_1 \leq 12,22\) 

Kết hợp với (*) ta có \(k_1\) chỉ có thể nhận giá trị : 3x2= 6; 3x3 = 9; 3x4 =12.

Như vậy có 3 vị trí trùng nhau của hai bức xạ trong đoạn MN.