K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

V
violet
Giáo viên
19 tháng 4 2016

\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)

Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV. 

Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.

\(E_1 = -13,6eV\)\(E_3 = -1,51 eV\)

\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)

Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)

Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.

Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn

\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)

10 tháng 3 2016

Nguyên tử phát ra bức xạ có tần số thỏa mãn
      \(hf_{12}= E_2-E_1\)

 \(=> f_{12}= \frac{E_2-E_1}{h}= \frac{-1,514 -(-3,407)}{h}\)

                                     \(= \frac{1,893eV}{6,625.10^{-34}}= \frac{1,893.1,6.10^{-19}}{6,625.10^{-34}}= 4,57.10^{14}Hz..\)

17 tháng 3 2016

Khi electron nhảy từ trạng thái có năng lượng En sang trạng thái có mức năng lượng nhỏ hơn Em thì nguyên tử phát ra bức xạ thỏa mãn 

      \(hf = E_n-E_m \)

=> \(h\frac{c}{\lambda} = E_m-E_n \)

=>  \(\lambda=\frac{hc}{E_m-E_n} =\frac{6,625.10^{-34}.3.10^8}{1,9.1,6.10^{-19}}=6,54.10^{-7}m= 0,654.10^{-6}m.\)                        

18 tháng 3 2016

Bhihi

18 tháng 3 2016

Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)

\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)

\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)

Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)

Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)

                 \(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)

Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)

22 tháng 3 2016

B nha

đúng 100% lun ak

tick mik đi

mik tick lại cho

21 tháng 11 2017

đáp án D mà

V
violet
Giáo viên
19 tháng 4 2016

Khi electron chuyển từ L (n = 2) sang K (n = 1) phát ra phô tôn có bước sóng λ21 thỏa mãn:

\(\frac{hc}{\lambda_{21}}= E_2-E_1,(1)\)

Tương tự

\(\frac{hc}{\lambda_{32}}= E_3-E_2,(2)\)

\(\frac{hc}{\lambda_{31}}= E_3-E_1,(3)\)

Cộng (2) cho (1), so sánh với (3): 

\(\frac{hc}{\lambda_{21}}+\frac{hc}{\lambda_{32}}= \frac{hc}{\lambda_{31}}\)=> \(\frac{1}{\lambda_{31}}=\frac{1}{\lambda_{21}}+\frac{1}{\lambda_{32}} \)

                            => \(\lambda_{31}= \frac{\lambda_{32}\lambda_{21}}{\lambda_{32}+\lambda_{21}}.\)

20 tháng 4 2016

Động năng tối thiểu của α chính là năng lượng thu vào của phản ứng.

Đề bài thiếu khối lượng của α và C.

Bạn tự tìm Wthu của phản ứng nhé.

21 tháng 4 2016

cảm ơn b

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)