\(T^2=\left(x\sqrt{4-y^2}+y\sqrt{4-z^2}+z\sqrt{4-x^2}\right)^2\le\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)

mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)

\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)

2 tháng 12 2017

Tuyển ơi, m giải cho ai thế

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

2 tháng 2 2020

từng k biết ngu vậy

2 tháng 2 2020

????

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu

19 tháng 7 2019

undefinedundefinedundefined

19 tháng 7 2019

\(1)\left( {4 + \sqrt {15} } \right)\left( {\sqrt {10} - \sqrt 6 } \right)\left( {\sqrt {4 - \sqrt {15} } } \right)\\ = \left( {4\sqrt {10} - 4\sqrt 6 + \sqrt {150} - \sqrt {90} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {4\sqrt {10} - 4\sqrt 6 + 5\sqrt 6 - 3\sqrt {10} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {\sqrt {10} + \sqrt 6 } \right)\sqrt {4 - \sqrt {15} } \\ = \sqrt {10\left( {4 - \sqrt {15} } \right)} + \sqrt {6\left( {4 - \sqrt {15} } \right)} \\ = \sqrt {40 - 10\sqrt {15} } + \sqrt {24 - 6\sqrt {15} } \\ = \sqrt {{{\left( {5 - \sqrt {15} } \right)}^2}} + \sqrt {{{\left( {3 - \sqrt {15} } \right)}^2}} \\ = 5 - \sqrt {15} + \sqrt {15} - 3 = 2\)

2) Áp dụng bất đẳng thức AM - GM ta có

\(\dfrac{{{x^2}}}{{y + z}} + \dfrac{{y + z}}{4} \ge 2\sqrt {\dfrac{{{x^2}}}{{y + z}}.\dfrac{{y + z}}{4}} = x(1)\)

Hoàn toàn tương tự:

\(\dfrac{{{y^2}}}{{z + x}} + \dfrac{{z + x}}{4} \ge y\left( 2 \right)\\ \dfrac{{{z^2}}}{{x + y}} + \dfrac{{x + y}}{4} \ge z\left( 3 \right) \)

Từ (1), (2), (3) ta có ngay:\(\left(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\right)+ \left(\dfrac{y^2}{z+x}+\dfrac{z+x}{4}\right)+\left( \dfrac{z^2}{x+y} +\dfrac{x+y}{4}\right)\geqslant x+y+z\\ \iff\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant \dfrac{x+y+z}{2} \)

Chú ý rằng \(x+y+z=2\), ta có ngay\(\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant 1\)

Vậy giá trị nhỏ nhất của $P$ là $1$, đạt được khi $x=y=z=\dfrac{2}{3}$.

Haizzz bị lỗi công thức suốt :((

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)