K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

21 tháng 1 2019

Chọn B

Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bởi hai mặt phẳng x = a và x = b là

V = ∫ a b S x d x

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

21 tháng 10 2017

24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

22 tháng 9 2017

Đáp án C.

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2) 2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9) 3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2) 4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là 5 diện tích hình phẳng...
Đọc tiếp

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2)

2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9)

3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2)

4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là

5 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=-x^2 +4 , trục hoành và các đường thẳng x=0,x=3 là

6 diện tích giới hạn bởi đường thẳng x=0,x=\(\pi\) đồ thị hàm số cosx và trục ox la

7 công thức tính diện tích hình phẳng giới hạn bởi đồ thị y=f(x) trục ox và hai đường thẳng x=a, x=b (a<b) là

8diện tích hình phẳng giới hạn bởi đồ thị hàm số y =x^2+3 và y=4x là

9 ính diện tích hình phẳng giới hạn bởi y=-x^2+2x;y=-3x

10 diện tích hình phẳng giới hạn bởi hai đường hảng x=0,x=\(\pi\) , đồ thị hàm số y=cosx và trục ox là

11 gọi S là diện tích hình phẳng giới hạn bởi các đường y=x^3,y=2 và y=0 là

12 tính thể tích V của vật ròn xoay tạo thành khi quay hình phẳng (h) giới hạn bởi các đường y=x^2;y=\(\sqrt{x}\) quanh trục ox

13 cho phần vậy thể B giới hạn bởi hai mặt phẳng có phương trình x=0, x-\(\frac{\pi}{3}\)cắt phần vật thể B bởi mặ phẳng vuông góc trục ox tại điểm có hoành độ x(0\(\le x\le\frac{\pi}{3}\) ta được thiết diện là mộ tam giác vuông có độ dài hai cạnh lần lượt là 2x và cosx. thể tích vật thể B là

14 thể tích V của vật thể nằm giữa hai mặt phẳng x=0 , x= \(\pi\) biết rằng thiết diện của vật có thể bị cắt bởi mặt phẳng vuông góc trục ox tại điểm có hoành độ x \(0\le x\le1\) được thiết diện là hình vuông có cạnh (x+1)

15 Tính thể tích của vật thể nằm giữa hai mặt phẳng x=−1x=−1x=1x=1, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục OxOx có hoành độ x(−1≤x≤1)x(−1≤x≤1) là một tam giác vuông cân với cạnh 2\(\sqrt{1-x^2}\) thể tích vật thể là

16 cho hai số phức z=a+bi ,\(z^,\)=c+di. hai số phức z=\(z^,\) khi

a {a=c, bi=di} B {a=d,b=c} C {a=c,b=d} D(a=b,c=d}

17cho số phức z=3-2i tim phẩn ảo của số phức liên hợp z

18 cho số phức z= 3+2i . tìm phần thực của số phức z^2

19 cho hai số phức z=1+3i ,w=2-i tim phẩn ảo của số phức u=\(\overline{z}\) .w

20 trong mặt phẳng oxy, cho điểm A(4,0),B(1;4) và C(1;-1) . GỌI G là trọng tâm tam giác ABC . Biết rằng G là biểm biểu diễn số phức z là

A z=3+3/2i B=3-3/2i C z=2-i D z=2+i

21 cho số phức thỏa (1-i)+4\(4\overline{z}\) =7-7i .Mô đun của số phức z là

7
NV
16 tháng 5 2020

19.

\(\overline{z}=1-3i\)

\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)

Phần ảo bằng -7

20.

Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

Biểu diễn trên mặt phẳng phức: \(z=2+i\)

21.

Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?

\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)

\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)

NV
16 tháng 5 2020

15.

Diện tích thiết diện:

\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)

Thể tích:

\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)

16.

\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)

17.

\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)

18.

\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)

\(\Rightarrow\) phần thực bằng 5

1 cho hình chóp S.ABCD đều có SA=AB=a. Góc giữa SA và CD là 2 Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=\(\frac{\sqrt{x^2-1}}{x-2}\) trên tập hợp D= \(\left(-\infty;-1\right)\cup\left[1;\frac{3}{2}\right]\) . Tính M+m A .P=2 B P=0 C P=-\(\sqrt{5}\) D P = \(\sqrt{3}\) 3 Tập nghiệm của bất phương trình \(\left(\frac{1}{1+a^2}\right)^{2x+1}\) >1 ( với a là tham số , a#0) là 4 Trong ko gian cho tam giác ABC vuông...
Đọc tiếp

1 cho hình chóp S.ABCD đều có SA=AB=a. Góc giữa SA và CD là

2 Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=\(\frac{\sqrt{x^2-1}}{x-2}\) trên tập hợp D= \(\left(-\infty;-1\right)\cup\left[1;\frac{3}{2}\right]\) . Tính M+m

A .P=2

B P=0

C P=-\(\sqrt{5}\)

D P = \(\sqrt{3}\)

3 Tập nghiệm của bất phương trình \(\left(\frac{1}{1+a^2}\right)^{2x+1}\) >1 ( với a là tham số , a#0) là

4 Trong ko gian cho tam giác ABC vuông tại A ,AB=a, AC=\(a\sqrt{3}\) . Tính độ dài đường sinh l của hình nón có được khi quay tam giác ABC xung quanh trục AB

5 Viết công thức tính V của vật thể nằm giữa hai mp x=0, x=ln4, biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x (\(0\le x\le ln4\)), ta được thiết diện là một hình vuông cạnh là \(\sqrt{xe^x}\)

6 cho cấp số cộng có u1=0 và công sai d =3. Tổng của 26 số hạng đầu tiên của cấp số cộng đó bằng bao nhiêu

7 cho khối chóp tam giác có đường cao bằng 100cm và cạnh đáy 20cm,21cm,29cm. Tính thể tích khối chóp

8 cho hai điểm A(-2;1;2),B(0;-1;1).Phương trình mặt cầu đường kính AB

9 Cho hình lập phương ABCD.\(A^,B^,C^,D^,\) , gÓC giữa hai đường thẳng \(B^,A\) và CD bằng

10 Tổng giá trị lớn nhất và nhỏ nhất của hàm số y= \(\sqrt{2-x^2}-x\) bằng

A \(2+\sqrt{2}\)

B 2

C 1

D \(2-\sqrt{2}\)

11 Số giao điểm của đồ thị hàm số y= \(x^2/x^2-4/\) với đường thẳng y=3 là

12 Tập nghiệm của bất pt \(log_{\frac{1}{3}}\left(x+1\right)>log_3\left(2-x\right)\) là S =(a;b) \(\cup\) (c;d) với a,b,c,d là các số thực. Khi đó a+b+c+d bằng

A 4

B 1

C 3

D 2

13 Tính thể tích khối tròn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB

14 trong ko gian với hệ trục tọa độ Oxyz, cho đường thẳng d :\(\frac{x-1}{1}=\frac{y+2}{-1}=\frac{z}{2}\) . MẶT phẳng (P) đi qua điểm M (2;0;-1) và vuông góc vói d có pt là

A x-y+2z=0

B x-2y-2=0

C x+y+2z=0

D x-y-2z=0

14
AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Bài 14:

Vecto chỉ phương của đường thẳng $d$ là: $\overrightarrow{u_d}=(1; -1; 2)$

Mp $(P)$ vuông góc với $d$ nên nhận $\overrightarrow{u_d}$ là vecto pháp tuyến

Do đó PTMP $(P)$ là:

$1(x-x_M)-1(y-y_M)+2(z-z_M)=0$

$\Leftrightarrow x-y+2z=0$

Đáp án A

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Bài 13:

Khi quay tam giác đều ABC quanh cạnh AB thì ta thu được một khối hình là hợp của 2 hình nón (ngược chiều nhau) có cùng bán kính đáy $r$ là đường cao của tam giác đều, tức là $r=\frac{\sqrt{3}}{2}.1=\frac{\sqrt{3}}{2}$ và đường cao là $h=\frac{AB}{2}=\frac{1}{2}$

Thể tích 1 hình nón: $V_n=\frac{1}{3}\pi r^2h=\frac{\pi}{8}$

Do đó thể tích của khối hình khi quay tam giác đều ABC quanh AB là: $2V_n=\frac{\pi}{4}$