Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-y^2=2=(x-y).(x+y)
ta co bang
x-y 1 2 -1 -2
y+x 2 1 -2 -1
x 1.5 -1.5
y 0.5 -0.5
Mình làm vầy thôi chứ không chắc chắn đúng hay sai đâu nha.
x^2 - x + 31 = x^2 - 2.x.1/2 + (1/2)^2 + 123/4
= (x - 1/2)^2 + 123/4
Vì (x - 1/2)^2 lớn hơn hoặc bằng 0 nên để biểu thức có giá trị nhỏ nhất thì (x - 1/2)^2 phải bằng 0
Vày biểu thức có giá trị nhỏ nhất bằng: 123/4 khi x=1/2
GTNN của A = x2 - x + 31
=> A = x2 - x + 31 = x ( x - 1 ) + 31
=> Min A = 31 khi :
x ( x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
=> GTNN A = 31
a) A = \(2x^2+x-1=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)\)\(-\frac{9}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\Leftrightarrow A\ge-\frac{9}{8}\)
Dấu = xảy ra \(\Leftrightarrow\)\(x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA =\(-\frac{9}{8}\)khi \(x=-\frac{1}{4}\).
b) B=\(5x-3x^2+2=-3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{49}{12}=-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\)
Vì \(\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2\le0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\le\frac{49}{12}\forall x\Leftrightarrow B\le\frac{49}{12}\forall x\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy maxB = \(\frac{49}{12}\)khi \(x=\frac{5}{6}\).
Lời giải:
Vì $x^3-ax^2+bx-2010$ có 3 nghiệm nguyên dương nên ta có thể viết $x^3-ax^2+bx-2010=(x-m)(x-n)(x-p)$ với $m,n,p$ đôi một phân biệt, là các số nguyên dương- nghiệm của $f(x)$
Khai triển ta có:
$x^3-ax^2+bx-2010=x^3-x^2(m+n+p)+x(mn+mp+np)-mnp$
Đồng nhất hệ số thu được:
\(\left\{\begin{matrix} m+n+p=a\\ mnp=2010\end{matrix}\right.\)
Không mất tổng quát giả sử $m>n>p$ thì $m^3> mnp=2010\Rightarrow m\geq 12$ và $m= \frac{2010}{np}\leq \frac{2010}{1.2}=1005$
$m$ lại là ước của $2010$ nên ta suy ra $m$ có thể nhận các giá trị:
$m=134; m=15; m=201; m=335;m=402;m=30; m=1005; m=670$
Từ đây ta có những bộ số thỏa mãn là:
$(m,n,p)=(134; 15; 1); (134; 5;3); (201; 5;2); (201; 10;1); (335; 6; 1); (335; 3;2); (402; 5;1); (1005; 2;1)$
Từ đây kiểm tra xem bộ nào thỏa $a=m+n+p$ min ta thấy $a_{\min}=134+5+3=142$
kb vs mik đi
6
k mình nha