K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Cho hàm số y = f(x) xác định trên khoảng (a; b).

+ Hàm số y = f(x) đồng biến trên khoảng (a; b) nếu:

        x1 < x2 ⇔ f(x1) < f(x2) ∀ x1, x2 ∈ (a; b)

+ Hàm số y = f(x) nghịch biến trên khoảng (a; b) nếu:

        x1 < x2 ⇔ f(x1) > f(x2) ∀ x1, x2 ∈ (a; b)

30 tháng 3 2017

Hàm số đồng biến trên (a,b)

⇔ ∀x1, x2 ∈ (a, b): x1<x2 ⇒ f(x1) < f(x2)

Hàm số nghịch biến trên (a,b)

⇔ ∀x1, x2 ∈ (a, b): x1 < x2 ⇒ f(x1) > f(x2)

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

17 tháng 5 2017

Hàm số \(y=-f\left(x\right)\) đồng biến trên khoảng \(\left(a;b\right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)

Chọn C.

7 tháng 7 2017

Do hàm số y = f(x) nghịch biến trên khoảng (a;b) nên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy hàm số y = - f(x) đồng biến trên khoảng (a;b).

30 tháng 3 2017
  • a > 0

Hàm số đồng biến trên (-,\(\dfrac{-b}{2a}\))

Hàm số nghịch biến trên (\(\dfrac{-b}{2a}\), +)

  • a < 0

Hàm số đồng biến trên (\(\dfrac{-b}{2a}\), +)

Hàm số nghịch biến trên (-,\(\dfrac{-b}{2a}\))

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá