K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7D

8C

9D

10B

11C

NV
23 tháng 3 2022

25.

\(R=\dfrac{BC}{2}\)

\(r=\dfrac{BC}{2}.tan\left(\dfrac{45^0}{2}\right)=\dfrac{BC\left(\sqrt{2}-1\right)}{2}\)

\(\Rightarrow\dfrac{R}{r}=\dfrac{1}{\sqrt{2}-1}=1+\sqrt{2}\)

26.

\(\left\{{}\begin{matrix}a=2R.sinA\\b=2RsinB\\c=2RsinC\end{matrix}\right.\) \(\Rightarrow2R.sinA+2R.sinB=2.2R.sinC\)

\(\Rightarrow sinA+sinB=2sinC\)

27.

\(p=\dfrac{13+14+15}{2}=21\)

\(S=\sqrt{p\left(p-13\right)\left(p-14\right)\left(p-15\right)}=84\)

28.

\(AM=\sqrt{\dfrac{2\left(AB^2+AC^2\right)-BC^2}{4}}=7,5\left(cm\right)\)

NV
23 tháng 3 2022

24.

Đường thẳng có 1 vtcp là \(\overrightarrow{u}=\left(2;-5\right)\)

25.

\(a^2=b^2+c^2-2bc.cosA\)

26.

A là mệnh đề sai, công thức đúng: \(S=\dfrac{1}{2}ab.sinC\)

27.

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\sqrt{3^2+4^2-2.3.4.cos60^0}=\sqrt{13}\)

28.

\(\widehat{A}=180^0-\left(35^030'+45^0\right)=99^030'\)

Áp dụng định lý hàm sin:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow b=\dfrac{a.sinB}{sinA}=\dfrac{12,5.sin\left(35^030'\right)}{sin\left(99^030'\right)}=7,36\left(m\right)\)

29C

30B

31B

a: \(\overrightarrow{AB}=\left(-4;3\right)AC;=\left(-2;0\right)\)

Vì -2/-4<>0/3

nên A,B,C không thẳng hàng

=>A,B,C là ba đỉnh của một tam giác

b: A là trung điểm của EC

=>\(\left\{{}\begin{matrix}x_E+1=2\cdot3=6\\y_E-1=2\cdot\left(-1\right)=-2\end{matrix}\right.\Leftrightarrow E\left(5;-1\right)\)

c: A là trọng tâm của tam giác BCG

=>\(\left\{{}\begin{matrix}-1+1+x_G=3\cdot3=9\\2-1+y_G=3\cdot\left(-1\right)=-3\end{matrix}\right.\Leftrightarrow G\left(9;-4\right)\)

d: ADBC là hình bình hành

=>vecto AD=vecto CB

vecto CB=(-2;3)

vecto AD=(x-3;y+1)

Do đó, ta có:

x-3=-2 và y+1=3

=>x=1 và y=2

=>D(1;2)

f: Tọa độ H là;

\(\left\{{}\begin{matrix}x=\dfrac{3-1+1}{3}=1\\y=\dfrac{-1+2-1}{3}=0\end{matrix}\right.\)

27 tháng 8 2023

cảm ơn anh:))

 

NV
12 tháng 4 2021

15.

\(\Delta'=m^2+m-2>0\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

Đáp án B

16.

\(\dfrac{\pi}{2}< a< \pi\Rightarrow\dfrac{\pi}{4}< \dfrac{a}{2}< \dfrac{\pi}{2}\Rightarrow\dfrac{\sqrt{2}}{2}< sin\dfrac{a}{2}< 1\Rightarrow\dfrac{1}{2}< sin^2\dfrac{a}{2}< 1\)

\(sina=\dfrac{3}{5}\Leftrightarrow sin^2a=\dfrac{9}{25}\Leftrightarrow4sin^2\dfrac{a}{2}.cos^2\dfrac{a}{2}=\dfrac{9}{25}\)

\(\Leftrightarrow sin^2\dfrac{a}{2}\left(1-sin^2\dfrac{a}{2}\right)=\dfrac{9}{100}\Leftrightarrow sin^4\dfrac{a}{2}-sin^2\dfrac{a}{2}+\dfrac{9}{100}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin^2\dfrac{a}{2}=\dfrac{1}{10}< \dfrac{1}{2}\left(loại\right)\\sin^2\dfrac{a}{2}=\dfrac{9}{10}\end{matrix}\right.\)

\(\Rightarrow sin\dfrac{a}{2}=\dfrac{3\sqrt{10}}{10}\)

NV
12 tháng 4 2021

17.

Áp dụng công thức trung tuyến:

\(AM=\dfrac{\sqrt{2\left(AB^2+AC^2\right)-BC^2}}{2}=\dfrac{\sqrt{201}}{2}\)

18.

\(\Leftrightarrow x^2+2x+4>m^2+2m\) ; \(\forall x\in\left[-2;1\right]\)

\(\Leftrightarrow m^2+2m< \min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)\)

Xét \(f\left(x\right)=x^2+2x+4\) trên \(\left[-2;1\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-2;1\right]\) ; \(f\left(-2\right)=4\) ; \(f\left(-1\right)=3\) ; \(f\left(1\right)=7\)

\(\Rightarrow\min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)=f\left(1\right)=3\)

\(\Rightarrow m^2+2m< 3\Leftrightarrow m^2+2m-3< 0\)

\(\Rightarrow-3< m< 1\Rightarrow m=\left\{-2;-1;0\right\}\)

Đáp án C