Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
a.Ta co:\(x^2-x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=1\left(n\right)\end{cases}}\)
\(\Rightarrow M=\frac{1-2}{1}=-1\)
b.De \(M\in Z\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}}\in Z\Rightarrow\sqrt{x}-2⋮\sqrt{x}\Rightarrow x=4\)
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
a,Đk: \(x>0\)
Sau khi rút gọn được M=\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
Có \(x^2-x=0\) <=> \(x\left(x-1\right)=0\)=>x-1=0(vì x>0)
<=>x=1(t/m)
Thay x=1 vào b/thức M đã rút gọn có:
M= \(\frac{\sqrt{1}-2}{\sqrt{1}}=-1\)
b, Có \(M=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)
Để M \(\in Z\) <=> \(\frac{2}{\sqrt{x}}\in Z\) => \(\frac{2}{\sqrt{x}}\in N^+\)
Với \(x\in N^+\)=> \(\left[{}\begin{matrix}\sqrt{x}\in N^+\\\sqrt{x}\notin N^+\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\frac{2}{\sqrt{x}}\in N^+\left(tm\right)\\\frac{2}{\sqrt{x}}\notin N^+\left(ktm\right)\end{matrix}\right.\)
=> \(\sqrt{x}\) thuộc ước tự nhiên của 2
<=> \(\sqrt{x}\in\left\{1,2\right\}\) <=> \(x\in\left\{1;4\right\}\)
Vậy để M\(\in Z< =>x\in\left\{1;4\right\}\)
Dạng tổng quát: \(ax^2+bx+c\) hoặc \(ax+b\sqrt{x}+c\)
Khi đó em tìm: \(a.c=?\)
Ví dụ: \(-3x+10\sqrt{x}-7\) có \(a.c=\left(-3\right).\left(-7\right)=21\)
Sau đó em phân tích số đấy ra thành tích 2 số: \(21=\left(-3\right).\left(-7\right)=3.7\)
Và tổng của 2 số nào bằng \(b\) thì em tách \(bx\) thành 2 số đó (nhớ kèm ẩn x)
\(21=3.7\) và \(b=3+7=10\) nên ta tách thành: \(-3x+3\sqrt{x}+7\sqrt{x}-7\)
Lúc này đặt nhân tử chung thôi!
\(-3\sqrt{x}\left(\sqrt{x}-1\right)+7\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)\)