Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,với m=4=>phương trình(1) <=>\(x^2+x+4-5=0\Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1.\left(-1\right)=5\Rightarrow\hept{\begin{cases}x1=\frac{-1+\sqrt{5}}{2}\\x2=\frac{-1-\sqrt{5}}{2}\end{cases}}\)
2 để phương trình có 2 nghiệm phân biệt =>\(\Delta>0\Leftrightarrow1^2-4.1.\left(m-5\right)>0\)
\(\Leftrightarrow1-4m+20>0\Leftrightarrow m< \frac{21}{4}\)áp dụng hệ thức vi-ét ta có
\(\hept{\begin{cases}x1+x2=\frac{-b}{a}=-1\hept{\begin{cases}-x1=x2+1\\-x2=x1=1\end{cases}}\\x1.x2=\frac{c}{a}=m-5\end{cases}}\)
để \(\frac{6-m-x1}{x2}+\frac{6-m-x2}{x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{m-6+x1}{-x2}+\frac{m-6+x2}{-x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{\left(m-5\right)+\left(x1+1\right)-2}{x1+1}+\frac{\left(m-5\right)+\left(x2+1\right)-2}{x2+1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{x1.x2}{x1+1}+1-\frac{2}{x1+1}+\frac{x1.x2}{x2+1}+1-\frac{2}{x2+1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{x1.x2}{-x2}+1-\frac{2}{-x2}+\frac{x1.x2}{-x1}+1-\frac{2}{-x1}=\frac{10}{3}\)
\(\Leftrightarrow-x1+1+\frac{2}{x2}-x2+1+\frac{2}{x1}=\frac{10}{3}\)
\(\Leftrightarrow-\left(x1+x2\right)+1+1+\frac{2x_2+2x_1}{x2.x2}=\frac{10}{3}\)
\(\Leftrightarrow3+\frac{2\left(x1+x2\right)}{x2.x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{2.\left(-1\right)}{m-5}=\frac{1}{3}\)
\(\Leftrightarrow\frac{-2}{m-5}=\frac{1}{3}\)
\(\Rightarrow m-5=-2.3\)
\(\Leftrightarrow m-5=-6\Leftrightarrow m=-1\)(t/m)
vậy m=1
x2 - 2x + 1 = 0 <=> (x -1)2 = 0 <=>x - 1 = 0 <=> x = 1 => pt có nghiệm kép x1 = x2 = 1
S= 1+1 = 2
bài làm
x2 - 2x + 1 = 0
<=> (x -1)2 = 0
<=>x - 1 = 0
<=> x = 1
=> pt có nghiệm kép x1 = x2 = 1
S= 1+1 = 2
hok tốt
b,
Trước tiên để pt có hai nghiệm phân biệt thì:
Δ′=22−(m+2)>0⇔m<2Δ′=22−(m+2)>0⇔m<2
Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:
{x1+x2=4x1x2=m+2{x1+x2=4x1x2=m+2
Khi đó:
x21+x22=3(x1+x2)x12+x22=3(x1+x2)
⇔(x1+x2)2−2x1x2=3(x1+x2)⇔(x1+x2)2−2x1x2=3(x1+x2)
⇔42−2(m+2)=3.4⇔42−2(m+2)=3.4
⇔m+2=2⇒m=0⇔m+2=2⇒m=0 (thỏa mãn)
Vậy m=0
a) Thay m = 2 vào phương trình ta có
<=> x2 - 4x + 4 = 0
<=> x2 - 2.2x + 22 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2
Vậy tập ngiệm của phương trình là S ={2}
Xin lỗi đây là giới hạn của em
a, Thay m = 2 vào phương trình trên ta được :
\(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy với m = 2 thì x = 2
b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=4\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)
\(x_1^2+x_2^2=3m+6\)
mà \(x_1+x_2=4\Leftrightarrow\left(x_1+x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2=16-2x_1x_2\)
hay \(16-2\left(m+2\right)=3m+6\Leftrightarrow16-2m-4=3m+6\)
\(\Leftrightarrow6=5m\Leftrightarrow m=\frac{6}{5}\)
-1;1