Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét ΔDBEΔDBE và ΔECFΔECF có :
Vì BE = CF và BC = AC
⇒⇒ CE = FA
BE = CF (gt)
Ta có CBAˆ+DBEˆ=FCEˆ+ACBˆCBA^+DBE^=FCE^+ACB^ (2 góc kề bù)
⇒FCEˆ=DBEˆ⇒FCE^=DBE^
⇒ΔDBE=ΔECF⇒ΔDBE=ΔECF (c . g . c)
⇒⇒ DE = EF
Xét ΔDBEΔDBE và ΔAFDΔAFD có :
Vì BE = AD và BA = BC
⇒⇒ FA = BD
BE = AD (gt)
Ta có : EADˆ+CABˆ=DBEˆ+CBAˆEAD^+CAB^=DBE^+CBA^ (kề bù)
⇒⇒ DBEˆ=FADˆDBE^=FAD^
⇒ΔDBE=ΔAFD⇒ΔDBE=ΔAFD (c . g . c)
⇒⇒ DE = DF
Vì DE = DF , DE = EF
⇒⇒ DE = DF = EF (T/C bắc cầu)
⇒ΔFDE⇒ΔFDE là tam giác đều
B C I H F E A
a)Ta có: BAI=CAI (AI là đường phân giác BAC)
Do:FH//AI=>CFH=CAI và BAI=AEF( đồng vị)
Mà:CFH=AFE(2 góc đối đỉnh)
Suy ra: AFE=AEF
Xét \(\Delta\)AFE:AFE=AEF=>\(\Delta\)AFE cân tại A=>Đường trung trực của EF đồng thời là đường cao
Hay:Đường trung trực của EF đi qua A
b) Như đã nói ở câu a:Đường trung trực của EF đồng thời là đường cao, giả sử ấy là AM
Ta có:AMF=90
Mà FH//AI=>AMF+MAI=180=>MAI=90=>AM\(\perp\)AI
Hay đường trung trực của EF vuông góc với AI
c)Do AI cố định nên đường trung trực của EF cố định
Mà \(\Delta\)AFE cân nên đường trung trực của EF đồng thời là đường trung tuyến ứng với EF
Hay đường trung tuyến ứng với EF cố định
muốn thành công thì ko được lười biếng
Muốn thành công thì không được lười biếng