K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2022

Ta có: \(59\equiv3\left(mod7\right)\Rightarrow59^n\equiv3^n\left(mod7\right)\)

Tương tự: \(17^n\equiv3^n\left(mod7\right)\) ; \(9^n\equiv2^n\left(mod7\right)\)

\(\Rightarrow A\equiv3^n-3^n-2^n+2^n\left(mod7\right)\)

\(\Rightarrow A⋮7\)

Vẫn tương tự, ta có: \(A\equiv4^n-2^n-4^n+2^n\left(mod5\right)\)

\(\Rightarrow A⋮5\)

Mà 7 và 5 nguyên tố cùng nhau

\(\Rightarrow A⋮35\)

1.Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BCa/ Chứng minh tứ giác OHDE nội tiếpb/ Chứng minh ED^2=EC.EBc/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với ABd/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN2.Bạn...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC

a/ Chứng minh tứ giác OHDE nội tiếp

b/ Chứng minh ED^2=EC.EB

c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB

d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN

2.Bạn A hỏi bạn B: " năm nay bố mẹ của anh bao nhiêu tuổi ?"

B trả lời: " bố tôi hơn mẹ tôi 4 tuổi. Trước đây khi tổng số tuổi của bố mẹ tôi là 104 tuổi thì tuổi của ba anh em chúng tôi là 14; 10 và 6. Hiện nay tổng tuổi của bố mẹ tôi gấp 2 lần tổng số tuổi của ba anh em tôi". Tính xem tuổi của bố mẹ bạn B là bao nhiêu ?

 

0
5 tháng 4 2022

Với p = 2 => 2p + p2 = 8 (loại)

Với p = 3 => 23 + 32 = 17 (loại) 

Nhận thấy với p > 3 => p lẻ 

Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\))

Khi đó P = 2p + p2 

= (2p + 1) + (p2 - 1)

Vì p lẻ => 2p + 1 = (2 + 1).(2p - 1 - 2p - 2 + ... + 1) \(⋮3\)(1) 

Với p = 3k + 1 => p2 - 1 = (p - 1)(p + 1) = (3k + 1 - 1)(3k + 1 + 1)

= 3k(3k + 2) \(⋮3\) (2) 

Từ (1) ; (2) => P \(⋮3\)(loại)

Với p = 3k + 2 => p2 - 1 = (p - 1)(p + 1) = (3k + 2 - 1)(3k + 2 + 1)

= 3(k + 1)(3k + 1) \(⋮\)3 (3) 

Từ (1) ; (3) => P \(⋮3\)

=> p = 3 là giá trị cần tìm 

5 tháng 4 2022

Dạ hay quá, em cám ơn thầy ạ
Em gặp mấy bài toán về chủ đề : Đồng Dư Thức-  khó  quá
May được thầy giúp đỡ ạ!

em ko bieets hu hu

11 tháng 6 2019

#)Giải :

a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)

1. a) Tính:\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) b)Tính giá trị của biểu thức:M = \(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với x = \(2+\sqrt{3}\)2.CMR nếu: a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\) b) Nếu a,b >0 thì:\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)3. a) Giải pt:   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)b)...
Đọc tiếp

1. a) Tính:

\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)

 b)Tính giá trị của biểu thức:

\(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với \(2+\sqrt{3}\)

2.CMR nếu:

 a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\)

 b) Nếu a,b >0 thì:

\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)

3. a) Giải pt:

   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)

   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

b) giải bất pt

 \(\sqrt{x^2-4x}< \sqrt{5}\)

4*.Chứng minh rằng với mọi số nguyên dương n ta luôn có:

\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)

5*. Tìm GTNN của hàm số:

\(y=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)

Có ai làm đc bài nào thì làm giúp mình nhé...  1 bài tkoy cũng được ạ. mình cảm ơn.

3
23 tháng 7 2018

Mấy bài này dài vật vã ghê =)))))))))))))

1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) 

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)

=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)

b, M \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))

\(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)

\(\sqrt{3}\left(x-1\right)\)

Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:

M\(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)

Vậy với x = \(2+\sqrt{3}\)thì M\(3+\sqrt{3}\)

2, Mình chỉ giải câu a thôi nhé:

\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)

\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)

\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)

\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)

Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)

\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)

\(\Leftrightarrow2\left(b+c\right)\ge4a\)

\(\Leftrightarrow b+c\ge2a\)

4*. Thật ra cái này mình xài làm trội, làm giảm là được mà

Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)

Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)

          \(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)

  +      .........................................................

          \(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)  

Cộng tất cả vào

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)

\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)

\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)

\(A+1>2\sqrt{n+1}-3+1\)

\(A+1>2\sqrt{n+1}-2\)

\(A+1>2\left(\sqrt{n+1}-1\right)\)

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

Cảm ơn b Trần Bảo Như nha <3