K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABI và ΔADI có

AB=AD

góc BAI=góc DAI

AI chung

=>ΔABI=ΔADI

=>IB=ID

b: Xét ΔABC có AI là phân giác

nên BI/AB=CI/AC

mà AB<AC

nên BI<CI

c: Xét ΔIBE và ΔIDC có

góc IBE=góc IDC

IB=ID

góc BIE=góc DIC

=>ΔIBE=ΔIDC

d: AB+BE=AE

AD+DC=AC

mà AB=AD và BE=DC

nên AE=AC

e: Xét ΔAEC có AB/AE=AD/AC

nên BD//EC

15 tháng 12 2021

a) chứng minh: tam giác ABD= tam giác ACD xét tam giác ABD và tam giác ACD có: AB=AC( giả thuyết) AD: cạnh chung Góc BDA=Góc ADC = 90 độ suy ra: tam giác ABD = tam giác ACD (c.g.c)

15 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}\widehat{IAD}=\widehat{CAD}\\\widehat{DIA}=\widehat{DKC}=90^0\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta AID=\Delta AKD\left(ch-gn\right)\\ \Rightarrow DI=DK;\widehat{IDA}=\widehat{KDA}\\ \text{Mà }\widehat{ADB}=\widehat{ADC}\\ \Rightarrow\widehat{ADB}-\widehat{IDA}=\widehat{ADC}-\widehat{KDA}\\ \Rightarrow\widehat{IDB}=\widehat{KDC}\\ c,AI=AK\\ \Rightarrow\Delta AIK\text{ cân tại }A\\ \Rightarrow\widehat{AIK}=\dfrac{180^0-\widehat{A}}{2}\\ \Delta ABC\text{ cân tại A}\\ \Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\\ \Rightarrow\widehat{AIK}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên IK//BC

1 tháng 8 2023

A B C I D E H

a/ Xét tg ABI và tg ADI có

AI chung

AB=AD (gt)

\(\widehat{BAI}=\widehat{CAI}\) (gt)

=> tg ABI = tg ACI (c.g.c) => ID=IB

b/

tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{ABI}=\widehat{ADI}\)

\(\widehat{EBI}=\widehat{ABE}-\widehat{ABI}=180^o-\widehat{ABI}\)

\(\widehat{CDI}=\widehat{ADC}-\widehat{ADI}=180^o-\widehat{ADI}\)

\(\Rightarrow\widehat{EBI}=\widehat{CDI}\) (1)

\(IB=ID\) (cmt) (2)

\(\widehat{BIE}=\widehat{DIC}\) (góc đối đỉnh) (3)

Từ (1) (2) (3) => tg IBE = tg IDC (g.c.g)

c/

tg ABI = tg ACI (cmt) => BE = DC

AB=AD (gt)

\(\Rightarrow AB+BE=AD+DC\Rightarrow AE=AC\)

Kéo dài AI cắt EC tại H'

Xét tg AEH' và tg ACH'

\(\widehat{BAI}=\widehat{CAI}\) (gt)

AH' chung

AE = AC (cmt)

=> tg AEH' = tg ACH' (c.g.c) => EH' = CH'

=> H' là trung điểm của EC mà H cũng là trung điểm EC (gt)

=> H' trùng H => A; I; H thẳng hàng

 

 

 

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

Bài 1: 

Xét tứ giác ABCD có

M là trung điểm của AC
M là trung điểm của BD

Do đó: ABCD là hình bình hành

Xét tứ giác ADBE có 

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

Suy ra: Hai đường chéo AB và DE cắt nhau tại trung điểm của mỗi đường

mà AB cắt DE tại I

nên I là trung điểm của BA

hay IA=IB

19 tháng 4 2018

sorry , I don't no

Em lớp 6 , chịu thôi

KB ko chị