Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
=> ΔAEH đồng dạng với ΔAHB
b: ΔAHB vuông tại H có HE vuông góc AB
nên AH^2=AE*AB
ΔAHC vuông tại H
mà HF là đường cao
nên AF*AC=AH^2=AE*AB
c: AE*AB=AF*AC
=>AE/AC=AF/AB
=> ΔAEF đồng dạng với ΔACB
d: Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=> ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME*MF=MB*MC
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)
\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{HAB}=\widehat{C}\)
- Xét tg AHB và tg CHA có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)
(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)
b) Xét tg BAH vuông tại H có :
AB2=BH2+AH2 (Pytago)
=>152=BH2+122
=>225=BH2+144
=>BH2=81
=>BH=9cm
- Do tg AHB đồng dạng tg CHA (cmt)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)
\(\Rightarrow HC=16cm\)
- Có : HB+HC=BC
=> BC=9+16=25
- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)
#H
(Ý c,d để suy nghĩ tiếp)
a, Xét tam giác AHB và tam giác CAB ta có :
^AHB = ^A = 900
^B _ chung
Vậy tam giác AHB ~ tam giác CAB ( g.g ) (1)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^A = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2)
Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC
b, Áp dụng định lí Py ta go cho tam giác AHB ta có :
\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm
Ta có tam giác AHB ~ tam giác AHC ( cma )
\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm
Áp dụng Py ta go cho tam giác AHC ta có :
\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm
c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)
mà \(BM=BC-MC=18-MC\)
do \(BC=BH+HC=9+9=18\)cm
\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm
\(\Rightarrow BM=BC-MC=18-9=9\)
( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )
\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)
thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy
bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé