Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình gợi ý nè : bạn thử lấy T nhân với 2 xem ( cả hai vế nhé )
Nếu bạn không ra thì k cho mình đi mình trình bày cho đôn giản mà mỗi tội hơi dài một chút.
Mấy bài dạng này biết cách làm là oke
Ta có :
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=2017\)
Vậy \(A=2017\)
Chúc bạn học tốt ~
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))
\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=2017\)
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\) => \(\frac{T}{2}=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\)
=> \(T-\frac{T}{2}=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\right)\)
<=> \(\frac{T}{2}=\frac{2}{2^1}+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2017}{2^{2016}}-\frac{2016}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)
<=> \(\frac{T}{2}=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)
Đặt: \(M=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}=>2M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\)
=> \(2M-M=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
=> \(M=\frac{1}{2}-\frac{1}{2^{2016}}< \frac{1}{2}\)
=> \(\frac{T}{2}< 1+\frac{1}{2}-\frac{2017}{2^{2017}}< 1+\frac{1}{2}=\frac{3}{2}\)
=> T < 3
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
Ta có :
\(S=\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{2016}{2017!}\)
\(S=\frac{3-1}{3!}+\frac{4-1}{4!}+\frac{5-1}{5!}+...+\frac{2017-1}{2017!}\)
\(S=\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+\frac{5}{5!}-\frac{1}{5!}+...+\frac{2017}{2017!}-\frac{1}{2017!}\)
\(S=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{4!}-\frac{1}{5!}+...+\frac{1}{2016!}-\frac{1}{2017!}\)
\(S=\frac{1}{2!}-\frac{1}{2017!}\)
\(S=\frac{1}{2}-\frac{1}{2017!}\)
Vậy \(S=\frac{1}{2}-\frac{1}{2017!}\)
Chúc bạn học tốt ~
1/2T=2/22 +3/23 +4/24 +...+2017/22017
T-1/2T= (2/21+3/22+4/23+...+2017/22016)-(2/22+3/23+4/24+...+2017/22017)
1/2T=2/21+3/22+4/23+...+2017/22016-2/22-3/23-4/24-...-2017/22017
1/2T=1+(3/22-2/22)+(4/23-3/23)+...+(2017/22016-2016/22016)-2017/22017
1/2T=1+(1/22+1/23+1/24+...+1/22016)-2017/22017
xét A = 1/22+1/23+1/24+...+1/22016
phần này dễ bạn tự làm nhé
A=1/2-1/22016<1/2(vì 1/22016>0)
1/2T<1/21+1/2-(1/22016+2017/22017)
1/2T<3/2(vì 1/22016+2017/22017>0)
T<3/2:1/2
T<3
vậy T<3
1/2T=2/22 +3/23 +4/24 +...+2017/22017 T-1/2T= (2/21+3/22+4/23+...+2017/22016 )-(2/22+3/23+4/24+...+2017/22017 ) 1/2T=2/21+3/22+4/23+...+2017/22016 -2/22 -3/23-4/24 -...-2017/22017 1/2T=1+(3/22 -2/22 )+(4/23 -3/23 )+...+(2017/22016 -2016/22016 )-2017/22017 1/2T=1+(1/22+1/23+1/24+...+1/22016 )-2017/22017 xét A = 1/22+1/23+1/24+...+1/22016 phần này dễ bạn tự làm nhé A=1/2-1/22016<1/2(vì 1/22016>0) 1/2T<1/21+1/2-(1/22016+2017/22017 ) 1/2T<3/2(vì 1/22016+2017/22017>0) T<3/2:1/2 T<3