Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{98x99}+\frac{1}{99x100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
A = 1/1x2 +1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + .... + 1/y x n = 39/40
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/y - 1/n = 39/40
A = 1 - 1/n = 39/40
A = 1 - 39/40 = 1/n
A = 1/40 = 1/n
=> n = 40
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n}\) = \(\frac{39}{40}\)
= \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{ax\left(a+1\right)}=\frac{39}{40}\) ( có : n = a x ( a+1) )
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{39}{40}\)
=\(\frac{1}{1}-\frac{1}{a+1}=\frac{39}{40}\)
( ta triệt tiêu tất cả các phân số ở giữa ) VD: trừ 1/2 rồi lại cộng 1/2 thì còn lại 0
\(\frac{1}{a+1}=\frac{1}{1}-\frac{39}{40}\)
\(\frac{1}{a+1}=\frac{1}{40}\)
a+1 = 40
a = 40 - 1
a = 39
vì a x (a+1) = n
nên 39 x 40 = n
n = 1560
\(ĐS:1560\)
CHÚC BẠN HỌC GIỎI
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
\(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n-1}\)
Áp dụng ta có:
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Tính C tương tự, áp dụng:
\(\frac{2}{n\left(n+2\right)}=\frac{n+2-n}{n\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)
B = 9899/9900
C=I don't know !!
Ủng hộ nhé !
T là 99/100 . Đúng 100% luôn nhé .