Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}\Leftrightarrow\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b.\left(x+1\right)}{\left(x+1\right)^3}\)
\(\Rightarrow\frac{3x+1}{\left(x+1\right)^3}-\frac{a+b.\left(x+1\right)}{\left(x+1\right)^3}=0\)\(\Rightarrow3x+1=a+b.\left(x+1\right)\)
Mà 3x+1=3.(x+1) -2 \(\Rightarrow b=3,a=-2\)
Ta có:
\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}=\frac{bx+b+a}{\left(x+1\right)^3}\)
Đồng nhất thức 2 vế được: \(\hept{\begin{cases}b=3\\a+b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=3\end{cases}}\)
\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b.\left(x+1\right)}{\left(x+1\right)^3}=\frac{bx+a+b}{\left(x+1\right)^3}\)
=>b = 3
=> a+b =1=> a= 1-b=1-3=-2
Vậy a = -2 ; b = 3
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0
=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0
=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0
=> -24x + 7 = 0
=> - 24x = -7
=> x = 7/24
b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5
=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5
=> 6x - 5 = -5
=> 6x = 0
=> x = 0
c, x^2 = -6x - 8
=> x^2 + 6x + 8 = 0
=> x^2 + 2.x.3 + 9 - 1 = 0
=> (x + 3)^2 = 1
=> x + 3 = 1 hoặc x + 3 = -1
=> x = -2 hoặc x = -4
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
⇔ \(6x^2-13x+5-6x^2-11x+2=0\)
⇔ \(24x=7\)⇔\(x=\frac{7}{24}\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
⇔ \(9x^2-4-9x^2+6x-1=5\)
⇔ \(6x=10\)⇔ \(x=\frac{5}{3}\)
c) \(x^2=-6x-8\)⇔\(x^2+6x+8=0\)⇔\(\left(x+2\right)\left(x+4\right)=0\)
⇔\(\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
Ta có:\(\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}=\frac{a+bx+b}{\left(x+1\right)^3}\)
Vì \(\frac{a+bx+b}{\left(x+1\right)^3}\) và \(\frac{3x+1}{\left(x+1\right)^3}\) đều có chung tử
Suy ra a+bx+b=3x+1