\(\text{Tính tổng: }\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

Ta có \(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\dfrac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29\cdot30}\\ =\dfrac{1}{3}\left(\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{24360}\right)=\dfrac{1}{3}\cdot\dfrac{1353}{8120}=\dfrac{451}{8120}\)

 

26 tháng 9 2021

\(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{3}{3.4.5.6}+...+\dfrac{3}{27.28.29.30}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\right)=\dfrac{1}{3}.\dfrac{4060-1}{28.29.30}\)

\(=\dfrac{1}{3}.\dfrac{4059}{24360}=\dfrac{1353}{24360}=\dfrac{451}{8120}\)

31 tháng 10 2022

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

21 tháng 9 2017

\(S_n=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(S_n=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{n\left(n+2\right)\left(n+3\right)}\right)\)\(S_n=\dfrac{1}{3}\left(\dfrac{1}{2.3.4}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)

\(S_n=\dfrac{1}{3}\left(\dfrac{1}{24}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)

\(S_n=\dfrac{1}{72}-\dfrac{1}{3\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

14 tháng 1 2017

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)

\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

22 tháng 8 2017

\(A=\dfrac{7}{1\cdot2\cdot3\cdot4}+\dfrac{7}{2\cdot3\cdot4\cdot5}+...+\dfrac{7}{98\cdot99\cdot100\cdot101}\\ =\dfrac{7}{3}\cdot\left(\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{98\cdot99\cdot100\cdot101}\right)\\ =\dfrac{7}{3}\cdot\left(\dfrac{4-1}{1\cdot2\cdot3\cdot4}+\dfrac{5-2}{2\cdot3\cdot4\cdot5}+...+\dfrac{101-98}{98\cdot99\cdot100\cdot101}\right)\\ =\dfrac{7}{3}\cdot\left(\dfrac{4}{1\cdot2\cdot3\cdot4}-\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{5}{2\cdot3\cdot4\cdot5}-\dfrac{2}{2\cdot3\cdot4\cdot5}+...+\dfrac{101}{98\cdot99\cdot100\cdot101}-\dfrac{98}{98\cdot99\cdot100\cdot101}\right)\\ =\dfrac{7}{3}\cdot\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}-\dfrac{1}{99\cdot100\cdot101}\right)\\ =\dfrac{7}{3}\cdot\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{99\cdot100\cdot101}\right)\\ =\dfrac{7}{3}\cdot\left(\dfrac{1}{6}-\dfrac{1}{999900}\right)\\ =\dfrac{7}{3}\cdot\dfrac{166649}{999900}=\dfrac{1166543}{2999700}\)

8 tháng 10 2015

Lại phải giải hết 
Gọi dãy số trên là A
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{200.201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-.....+\frac{1}{200.201.202}-\frac{1}{201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{201.202.203}\)(chỗ này lm hơi tắt tí )
\(3A=\frac{1}{6}-\frac{1}{8242206}=\frac{1373701}{8242206}-\frac{1}{8242206}=\frac{1373700}{8242206}\)
\(A=\frac{1373700}{8242206}:3=\frac{457900}{8242206}\)

16 tháng 9 2017

\(\Rightarrow\left(\frac{1}{1}-\frac{1}{30}\right)x=-3\)

\(\Rightarrow\frac{29}{30}x=-3\)

\(\Rightarrow x=\left(-\frac{29}{90}\right)\)

16 tháng 9 2017

tính trog ngoặc trc nè :

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)

=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)

=\(\frac{1}{6}-\frac{1}{24360}\)

=\(\frac{1353}{8120}\)

thay vô biểu thức :

\(\frac{1353}{8120}.x=-3\)

x=\(-\frac{8120}{451}\)

1 tháng 3 2018

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)