Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
a) \(\left(2x-1\right)^{10}=\left(1-2x\right)^5\)
\(\Rightarrow\left(2x-1\right)^2=1-2x\)
\(\Rightarrow4x^2-4x+1=1-2x\)
\(\Rightarrow4x^2-4x=-2x\)
\(\Rightarrow2x^2-2x=-x\)
\(\Rightarrow2x^2-x=0\)
\(\Rightarrow x.\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
b) \(\left(3x-1\right)^{15}=\left(1-3x\right)^8\)
\(\Rightarrow\left(3x-1\right)^{15}-\left(1-3x\right)^8=0\)
\(\Rightarrow\left(3x-1\right)^{15}-\left(-\left(3x-1\right)\right)^8=0\)
\(\Rightarrow\left(3x-1\right)^{15}-\left(3x-1\right)^8=0\)
\(\Rightarrow\left(3x-1\right)^8.\left(\left(3x-1\right)^7-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(3x-1\right)^8=0\\\left(3x-1\right)^7-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ....
c) Tự lm
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+8+2x+4\right)\left(3x+8-2x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(5x+12\right)\left(x+4\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: \(\Leftrightarrow\left|4x+2\right|=x+15\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-15\\\left(4x+2+x+15\right)\left(4x+2-x-15\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-15\\\left(5x+17\right)\left(3x-13\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{17}{5};\dfrac{13}{3}\right\}\)
c: =>3x+7>=0
hay x>=-7/3
d: =>|2x-5|=-2x+5
=>2x-5<=0
hay x<=5/2
Bài 1:
\((1-2x)^2=9=3^2=(-3)^2\)
\(\Rightarrow \left[\begin{matrix} 1-2x=3\\ 1-2x=-3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=2\end{matrix}\right.\)
Bài 2:
\((x+5)^3=-64=(-4)^3\)
\(\Rightarrow x+5=-4\Rightarrow x=-9\)
Bài 3:
\((3x-5)^2=16=4^2=(-4)^2\)
\(\Rightarrow \left[\begin{matrix} 3x-5=4\\ 3x-5=-4\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=\frac{1}{3}\end{matrix}\right.\)
Bài 4:
\((x-1)^3=27=3^3\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
Bài 5:
\(x^2+x=0\Leftrightarrow x(x+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=-1\end{matrix}\right.\)
Bài 6:
\(5^{x+2}=625=5^4\)
\(\Rightarrow x+2=4\Rightarrow x=2\)
a) x3 = -27
<=> -33 = -27
=> x = -3
b) (2x - 1)3 = 8
<=> 8x3 - 12x2 + 6x - 1 = 8
<=> 8x3 - 12x2 + 6x - 1 - 8 = 0
<=> (2x - 3)(4x2 + 3) = 0
<=> 2x - 3 = 0 hoặc 4x2 + 3 = 0
2x = 0 + 3
2x = 3
x = 3/2
=> x = 3/2
c) x3 = x5
<=> x3 - x5 = 0
<=> x3(1 - x2) = 0
<=> x = 0; 1; -1
=> x = 0; 1; -1
d) (x - 2)2 = 16
<=> (x - 2)2 = 42
<=> x - 2 = 4 hoặc x - 2 = -4
x = 4 + 2 x = -4 + 2
x = 6 x = -2
=> x = 6; -2
g) (2x - 3)2 = 9
<=> (2x - 3)2 = 32
<=> 2x - 3 = 3 hoặc 2x - 3 = -3
2x = 3 + 3 2x = -3 + 3
2x = 6 2x = 0
x = 3 x = 0
=> x = 3; 0
y) 3x3 - 4x = 0
<=> x(3x - 4) = 0
<=> x = 0 hoặc 3x - 4 = 0
3x = 0 + 4
3x = 4
x = 4/3
| 3x + 8 | - 2x = 5 (1)
Với x < -8/3
(1) <=> -( 3x + 8 ) - 2x = 5
<=> -3x - 8 - 2x = 5
<=> -5x = 13
<=> x = -13/5 ( ktm )
Với x ≥ -8/3
(1) <=> 3x + 8 - 2x = 5
<=> x = -3 ( ktm )
Vậy không có giá trị của x thỏa mãn
\(\left|3x+8\right|-2x=5\left(1\right)\)
Ta có : | 3x + 8 | bằng :
+) 3x + 8 nếu \(x\ge\frac{-8}{3}\)
+) -3x - 8 nếu \(x< \frac{-8}{3}\)
Để giải phương trình ( 1 ) ta quy về giải 2 phương trình sau :
+) \(3x+8-2x=5\) với \(x\ge\frac{-8}{3}\)
\(3x+8-2x=5\)
\(\Leftrightarrow x+8=5\Leftrightarrow x=-3\left(ktm\right)\)
Vậy -3 không phải là nghiệm của phương trình ( 1 )
+) \(-3x-8-2x=5\)với \(x< \frac{-8}{3}\)
\(-3x-8-2x=5\)
\(\Leftrightarrow-5x+8=5\Leftrightarrow x=\frac{3}{5}\left(tm\right)\)
Vậy \(x=\frac{3}{5}\)là nghiệm duy nhất của phương trình ( 1 )