Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{A}{B}=\dfrac{n^3+2n^2-3n+2}{n^2-n}=\dfrac{\left(n^3-n^2\right)+3n^2-3n+2}{n^2-n}=\dfrac{n\left(n^2-n\right)+3\left(n^2-n\right)+2}{n^2-n}\)\(C=n+3+\dfrac{2}{n^2-n}\)
\(n,C\in Z\Rightarrow\dfrac{2}{n^2-n}\in Z\Rightarrow n^2-n=\left\{-2;-1;1;2\right\}\)
n^2 -n là hai số chẵn
\(\left[{}\begin{matrix}n^2-n=-2\\n^2-n=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}n^2-n=-2\left(vn\right)\\n^2-n=2\left[{}\begin{matrix}n_1=-1\\n_2=2\end{matrix}\right.\end{matrix}\right.\)
2n2 + 5n - 1 | 2n - 1
2n2 - 2n | 2n + 7
-----------------
7n - 1
7n - 7
------------------
6
Để 2n2 + 5n - 1 chia hết cho 2n - 1 thì 6 phải chia hết cho 2n - 1
Hay 2n-1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }
Ta có bảng :
2n-1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
n | 1 | 1,5 | 2 | 3,5 | 0 | -0,5 | -1 | -2,5 |
Vậy n thuộc { 1; 1,5; 2; 3,5; 0; -0,5; -1; -2,5 }
2n2 + 3n + 3 | 2n-1
- 2n2 - n | n + 2
0 + 4n +3
- + 4n -2
+ 5
Để phép chia tren là phép chia hết thì :
\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
+ ) 2n - 1 = 1
2n = 2
n = 1
+ ) 2n - 1 = -1
2n = 0
n = 0
+ ) 2n - 1 = 5
2n = 6
n = 3
+ ) 2n - 1 = -5
2n = -4
n = -2
Vậy x \(\in\) { -2;3 ;1 ; 0 }
Ta có:
\(\dfrac{2n^2-n+2}{2n+1}=\dfrac{2n^2+n-2n-1+3}{2n+1}=\\ \dfrac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\dfrac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\\ =n-1+\dfrac{3}{2n+1}\)
Để 2n2−n+2 chia hết cho 2n + 1 (với n ∈ Z) thì 2n + 1 phải là ước của 3. Do đó:
2n + 1 = 1=> 2n = 0 => n=0.
2n + 1 = −1 => 2n = −2 => n = −1.
2n+1 = 3 =>2n = 2 => n = 1.
2n + 1 = −3 => 2n = −4 => n = − 2.
Vậy n = 0; -1; -2; 1.
Ta có : \(2n^2-n+2=n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\Rightarrow3⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-2,-1,0,1\right\}\)
Vậy : \(n\in\left\{-2,-1,0,1\right\}\)