Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(8x+8y+8z< 8x+9y+10z\)
\(\Rightarrow x+y+z< \frac{100}{8}< 13\)
\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)
Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)
Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Nhân 2 vế của (1) với 8 ta đc:
\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).
Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)
Với \(z=1\Rightarrow y=2;x=9\)
Vậy...
Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12
Có
100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥3
Tức là
y+2z ∈ {3;4}
Theo đề bài thì
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra
y+2z=4 Hay y=2; z=1
Thế ngược lại vào
8x+9y+10z=100 tìm được x=9
Vậy (x,y,z)=(9,2,1)
\(xy+xz+yz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
bây giờ ta đi chứng minh bđt phụ:
với \(a_1;a_2;...;a_8>0\) ta có: \(a_1+a_2+...+a_8\ge8\sqrt[8]{a_1a_2...a_8}\)(Cô si)
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge8\sqrt[8]{\frac{1}{a_1a_2...a_8}}\)
Nhân vế với vế ta đc:
\(\left(a_1+a_2+...+a_8\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\right)\ge64\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge\frac{64}{a_1+a_2+...+a_8}\)
Dấu "=" xảy ra <=> a1=a2=..=a8
a/d bđt trên ta có:
\(\frac{64}{4x+3y+z}=\frac{64}{x+x+x+x+y+y+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\)
a/d tương tự với 2 cái còn lại rồi cộng vế với vế ; thay tổng 1/x+1/y+1/z=1 là xong nhé
\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)
\(\Rightarrow3\left(x-3\right)^2\le33\)
\(\Leftrightarrow\left(x-3\right)^2\le11\)
\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)
Thế lần lược vô giải tiếp sẽ ra
<=>3(x2-6x+9)+6y2+2z2+3y2z2=33
<=>3(x-3)2+6y2+2z2+3y2z2=33
nhận thấy 3(x-3)2;6y2;3y2z2 chia hết cho
=>2z2 chia hết cho 3=>z chia hết cho 3
giả sử trong 4 số đó không số nào =0
=>\(3\left(x-3\right)^2\ge3;6y^2\ge6;2z^2\ge18;3y^2z^2\ge27\Rightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2\ge54\)(vô lí)
với x-3=0
=>x=3
pt trở thành 6y2+2z2+3y2z2=6
<=>(3y2+2)(z2+2)=10
với y=0
=>3(x-3)2+2z2=33 (đến đây thid dễ rồi)
với z=0=>3(x-3)2+6y2=33
=>(x-3)2+2y2=11
\(x^2+15^y=2^z\)(\(z\ge4\))
Do VT chẵn và 15 lẻ nên x lẻ
Khi đó x có dạng 2k+1(\(k\in N\))
\(\Rightarrow x^2\equiv1\left(mod4\right)\)
TH1:y chẵn \(\Rightarrow15^y\equiv1\left(mod4\right)\)
\(\Rightarrow VT\equiv2\left(mod4\right)\)
\(\Rightarrow2^z\equiv2\left(mod4\right)\).Điều này chỉ xảy ra khi z=1 (nếu z>1 thì 2z chia hết cho 4)
Mà z>=4 => Loại TH này
\(15⋮3\)\(\Rightarrow x^2\equiv2\left(mod3\right)\)(Vô lí)
Vậy y lẻ.
TH2:Với y lẻ thì \(15^y\equiv-1\left(mod4\right)\)mà \(2^z⋮4\)
\(\Rightarrow x^2\equiv-1\left(mod4\right)\)(Vô lí)
Vậy ko có x,y,z là số nguyên dương thỏa mãn
@ Tuấn Đạt@ Sao lại không có nghiệm thỏa mãn. ??
x = 1; y = 1; z = 4. thỏa mãn mà.
Bước 1: Nhân cả hai tầm nhìn của phương pháp với -1 để chuyển các hạng tử âm sang tầm nhìn bên phải của dấu bằng, ta được:
9y² - 3x² - 4z² - 6y²z² = -243
Bước 2: Tách biến và rút gọn chúng lại:
3x² - 9y² + 6y²z² = 4z² + 243
Bước 3: Áp dụng bổ đề Fermat để giải phương trình:
Ta có:
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
Áp dụng công thức trên, ta có:
(2z - 3y)² + 3x² = (13)²
Vì x, y, z là các nguyên dương nên ta có 2z - 3y > 0, do đó ta có:
2z - 3y = 13
Như vậy, ta có hệ thống phương tiện:
2z - 3y = 13
3x² = 169 - (2z - 3y)²
Bước 4: Giải hệ phương trình:
Với 2z - 3y = 13, ta có thể giải được y và z theo x:
y = (2z - 13)/3
z = (3y + 13)/2
Thay vào phương trình 3x² = 169 - (2z - 3y)², ta được:
3x² = 169 - (2((3y + 13)/2) - 3y)² = 169 - 49y²
Từ đó, ta có:
y² = (169 - 3x²)/49
y là số nguyên dương, do đó chỉ có một số giá trị của x có thể làm cho y là số nguyên, đó là khi 169 - 3x² chia hết cho 49. Ta có:
3x² = 169 - 49k (với k là một số nguyên)
x² + 16k/3 = 169/3
Vì x là một số nguyên dương, nên 169/3 - 16k/3 phải là một số chính phương. Kiểm tra và tìm được:
169/3 - 16k/3 = 64
k = 15
Thay k = 15 vào phương trình 3x² = 169 - 49k, ta được:
x² = 64
x = 8
Bước 5: Kết luận:
Do đó các bộ số nguyên dương đối với phương trình là: (x, y, z) = (8, 1, 5) hoặc (x, y, z) = (8, 1, -6).
Do \(243\) ; \(3x^2-9y^2+6y^2z^2\) đều chia hết cho 3 \(\Rightarrow4z^2\) chia hết cho 3
\(\Rightarrow z\) chia hết cho 3 \(\Rightarrow z=3z_1\) với \(z_1\) nguyên dương
\(\Rightarrow3x^2-9y^2+36z^2_1+54y^2z_1^2=243\)
\(\Rightarrow x^2-3y^2+12z_1^2+18y^2z_1^2=81\)
Lý luận tương tự ta được \(x=3x_1\) với \(x_1\) nguyên dương
\(\Rightarrow9x_1^2-3y^2+12z_1^2+18y^2z_1^2=81\)
\(\Rightarrow3x_1^2-y^2+4z_1^2+6y^2z_1^2=27\) (1)
\(\Rightarrow3x_1^2+4z_1^2+y^2\left(6z_1^2-1\right)=27\)
Do \(x_1;z_1\) nguyên dương \(\Rightarrow x_1;z_1\ge1\)
\(\Rightarrow3x_1^2+4z_1^2+y^2\left(6z_1^2-1\right)\ge3+4+5y^2=7+5y^2\)
\(\Rightarrow7+5y^2\le27\Rightarrow y^2\le4\Rightarrow y\le2\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\) thế vào (1)
\(\Rightarrow3x_1^2+10z_1^2=28\)
Nếu \(z_1\ge2\Rightarrow3x_1^2+10z_1^2>28\) (ktm) \(\Rightarrow z_1=1\Rightarrow3x_1^2=18\) ko tồn tại \(x_1\) nguyên thỏa mãn
- Với \(y=2\) thế vào (1) \(\Rightarrow3x_1^2+28z_1^2=31\Rightarrow x_1=z_1=1\)
\(\Rightarrow x=z=3\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn là \(\left(x;y;z\right)=\left(3;2;3\right)\)