K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3x^2y+3x^2z+3y^2z+3xy^2+3xz^2+3yz^2+6xyz-x^3-y^3-z^2\) 

\(=3x^2y+3xy^2+3x^2z+3xz^2+3y^2z+3yz^2+6xyz\)

\(=3xy\left(x+y\right)+3xz\left(x+z\right)+3yz\left(y+z\right)+6xyz\)

\(=3\left[xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+2xyz\right]\)

\(=3\left[xy\left(x+y\right)+x^2z+xz^2+y^2z+yz^2+2xyz\right]\)

\(=3\left[xy\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+yz\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

23 tháng 9 2016

b)  \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(y-2z+x\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-y+2z-x\right)\)

\(=\left(x-z\right)\left(x-y\right)\left(3z-3y\right)\)

\(=3\left(x-z\right)\left(x-y\right)\left(z-y\right)\)

4 tháng 8 2019

Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)

Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Hay \(A=3\cdot2x\cdot2y\cdot2z\)

\(A=24xyz\)

15 tháng 8 2017

Đặt y-z=-[(x-y)+(z-x)]

Thay vào rồi cm nha bạn

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)

\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)

   = 3(y2+z2)(x4+x2y2-x2z2-y2z2)

   = 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]

   = 3(y2+z2)(x2-z2)(x2+y2)

   = 3(y2+z2)(x-z)(x+z)(x2+y2)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)

  = (x+y)[3xy+3xz+3yz+3z

  = 3(x+y)(xy+xz+yz+z2)

  = 3(x+y)[x(y+z)+z(y+z)]

  = 3(x+y)(x+z)(y+z)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)

\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)

\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)

\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)

\(=3x^2y+3xy^2\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)

\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)

P/s: Ko chắc