Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/2. ( 1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +........+ 1/2013 - 1/2015)
= 1/2 . ( 1- 1/2015)
= 1007/2015
\(B=\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2013\times2015}\\
2B=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2013\times2015}\\
2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\\2B=1-\frac{1}{2015}=\frac{2014}{2015}\\
\Rightarrow B=\frac{2014}{2015}
\div2=\frac{1007}{2015}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2013.2015}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)
Vậy A=1007/2015
\(2A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(2A=1-\frac{1}{2015}\)
\(A=\frac{2014}{2015}:2\)
\(A=\frac{1007}{2015}\)
1/1.3+1/3.5+...+1/2013.2015
=1/2.(1/1-1/3+1/3-1/5+...+1/2013-1/2015)
=1/2.(1/1-1/2015)
=1/2.2014/2015
=1007/2015
A=1/1.3+1/3.5+1/5.7+...+1/2013.2015
2A=2.(1/1.3+1/3.5+1/5.7+...+1/2013.2015)
=2/1.3+2/3.5+2/5.7+...+2/2013.2015
=1-1/3+1/5-1/7+1/7-1/9+...+1/2013-1/2015
=1-1/2015
=2014/2015
=>2A=2014/2015=>A=1007/2015
a)1/5.6+1/6.7+1/7.8+.......+1/99.100
= (1/5-1/6)+(1/6-1/7)+(1/7-1/8)+.....+(1/99-1/100)
= 1/5 - 1/100
= 19/100
b)2/1.3+2/3.5+2/5.7+.........+2/2013.2015
= (1/1-1/3)+(1/3-1/5)+(1/5-1/7)+.....+(1/2013+1/2015)
= 1/1 - 1/2015
= 2014/2015
\(a,\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{5}-\frac{1}{100}=\frac{20}{100}-\frac{1}{100}=\frac{19}{100}\)
\(b,\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\frac{1}{1}-\frac{1}{2015}=\frac{2015}{2015}-\frac{1}{2015}=\frac{2014}{2015}\)
Ta có: A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2013.2015}\)
\(\Leftrightarrow2A=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}\right)\)
\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2013}+\dfrac{1}{2013}-\dfrac{1}{2015}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2015}=\dfrac{2012}{6045}\)
\(\Leftrightarrow A=\dfrac{1006}{6045}\)
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{2013.2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}+\dfrac{1}{2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{2015}\)
2A=\(\dfrac{2014}{2015}\)
A=\(\dfrac{1007}{2015}\)
Khi gặp bài này, bn nên tách 1 phân số ra thành hiệu của 2 phân số.
\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)
\(\Rightarrow2M=\frac{16}{51}\)
\(\Rightarrow M=\frac{8}{51}\)
\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)
\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)
\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)
\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)
\(\Rightarrow N=-\frac{1007}{403}\)
\(M=1-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)\)
\(M=1-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)
\(M=1-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(M=1-\frac{1}{2}.\left(1-\frac{1}{2015}\right)\)
bạn tự tính nốt nhé
\(M=1-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{2013.2015}\)
\(\Leftrightarrow M=1-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\right)\)
\(\Leftrightarrow M=1-\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(\Leftrightarrow M=1-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(\Leftrightarrow M=1-\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(\Leftrightarrow M=1-\frac{1}{2}.\frac{2014}{2015}\)
\(\Leftrightarrow M=1-\frac{2014}{4030}\)
\(\Leftrightarrow M=\frac{2016}{4030}=\frac{1008}{2015}\)