\(\text{Giải pt}\)

\(A^2_{x-2}+C^{x-2}_x=101\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Giải : 

\(A^2_{x-2}+C^{x-2}_x=101\)\(\left(ĐK:\hept{\begin{cases}x\in Z\\x\ge4\end{cases}}\right)\)

\(\Leftrightarrow\frac{\left(x-2\right)!}{\left(x-4\right)!}+\frac{x!}{\left(x-2\right)!2!}=101\)

\(\Leftrightarrow\left(x-2\right).\left(x-3\right)+\frac{x.\left(x-1\right)}{2}=101\)

\(\Leftrightarrow2.\left(x-2\right).\left(x-3\right)+x.\left(x-1\right)=202\)

\(\Leftrightarrow2x^2-6x-4x+12+x^2-x-202=0\)

\(\Leftrightarrow3x^2-11x-190=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\left(tm\right)\\x=\frac{-19}{3}\left(l\right)\end{cases}}\)

31 tháng 3 2017

\(\Leftrightarrow\frac{-x+1}{2}=\frac{x-2}{x-4}\)

\(\Leftrightarrow x^2+4x-3=2x-4\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Bài này là bài lớp 8 mà.

31 tháng 3 2017

BẠN HỌC LỚP MẤY Ạ

26 tháng 4 2019

a) Ta có △\(=b^2-4ac=\left[2\left(m+1\right)\right]^2-4.1.\left(-m^2\right)=4\left(m+1\right)^2+4m^2\ge0\Rightarrow\)phương trình luôn có nghiệm \(x_1,x_2\)

b) Theo định lí Vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-2m-2}{1}=-2m-2\\x_1x_2=\frac{c}{a}=\frac{-m^2}{1}=-m^2\end{matrix}\right.\)

Ta lại có \(x^2_1+x_2^2=4\Leftrightarrow x^2_1+2x_1x_2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\Leftrightarrow\left[-\left(2m+2\right)\right]^2-2\left(-m^2\right)=4\Leftrightarrow4m^2+8m+4+2m^2=4\Leftrightarrow6m^2+8m=0\Leftrightarrow3m^2+4m=0\Leftrightarrow m\left(3m+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}m=0\\m=-\frac{4}{3}\end{matrix}\right.\)

Vậy m=0 hoặc m=\(\frac{-4}{3}\) thì \(x_1^{^2}+x_2^2=4\)

8 tháng 7 2017

a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)

\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)

\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)

\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)

\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)

Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)

\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)

c)Áp dụng BĐT CAuchy-Schwarz ta có:

\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)

\(\le\left(1+1\right)\left(x-2+4-x\right)\)

\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)

\(\Rightarrow P^2\le4\Rightarrow P\le2\)