K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

ĐK: \(\hept{\begin{cases}2a^2+bc\ne0\\2b^2+ac\ne0\\2c^2+ab\ne0\end{cases}}\)

Từ điều kiện => a + b + c >0

Quy đồng hai vế ta có:

bđt <=> \(-3a^2b^2c^2+a^4bc+b^4ac+c^4ab\ge0\)

<=> \(abc\left(a^3+b^3+c^3-3abc\right)\ge0\)

<=> \(abc\left[\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\right]\ge0\)

<=> \(abc\left[\frac{\left(a-b\right)^2}{2}+\frac{\left(b-c\right)^2}{2}+\frac{\left(a-c\right)^2}{2}\right]\ge0\)( vì a + b + c >0)

điều trên luôn đúng với mọi số thực a, b , c không âm 

Vậy bất đẳng thức ban đầu đúng.

Dấu "=" xảy ra <=> a = 0 hoặc b = 0 hoặc c = 0 hoặc a = b = c.

13 tháng 8 2016

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:
BĐT cần chứng minh tương đương với:

$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq 1(*)$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq \frac{9}{bc(2a^2+bc)+ac(2b^2+ac)+ab(2c^2+ab)}=\frac{9}{(ab+bc+ac)^2}=\frac{9}{3^2}=1$

Do đó BĐT $(*)$ đúng. Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

NV
13 tháng 6 2020

Đặt vế trái là P

\(P=\frac{1}{a^2+b^2+b^2+1+2}+\frac{1}{b^2+c^2+c^2+1+2}+\frac{1}{c^2+a^2+a^2+1+2}\)

\(P\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ca+2a+2}=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(P\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+c+abc}+\frac{b}{abc+ab+b}\right)\)

\(P\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

9 tháng 2 2022

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

\(\Rightarrow\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}\cdot\frac{b+c}{4bc}}=\frac{1}{a}\)

\(\Rightarrow\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge2\sqrt{\frac{ca}{b^2\left(c+a\right)}\cdot\frac{c+a}{4ca}}=\frac{1}{b}\)

\(\Rightarrow\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}\cdot\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng theo vế các bất đẳng thức trên ta được:

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}+\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)nên:

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) 

hay\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Bất đẳng thức xảy ra khi \(a=b=c\)

10 tháng 2 2022

bạn giỏi quá

Nguyễn Đăng Nhân

NV
20 tháng 6 2020

\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)

Cộng vế với vế:

\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)

AH
Akai Haruma
Giáo viên
5 tháng 2 2017

Lời giải:

\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)

Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:

\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$