\(\text{Chứng minh trong một tam giác nhọn thì trọng tâm; trực tâm; tâm đường tròn ngoại tiếp th...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Mình làm theo cách này hơi dài. Mình có đặt thêm điểm và tạo nhiều hình để làm. Có gì sai sót thông cảm nhé

Cho tam giác ABC nhọn có M,N lần lượt là trung điểm BC và AC. Đường thằng vuông góc với AB kẻ từ B và đường thăng vuông góc với AC kẻ từ C cắt nhau tại D. Gọi H là trực tâm, G là trọng tâm, O là tâm đường tròn ngoại tiếp tam giác ABC

                                                          Giải:

Bạn là CTV nên mình chỉ ghi ý chính thôi

Chứng minh H,M,D thẳng hàng và MH=MD

Do G là trọng tâm tam giác ABC nên 

\(\frac{AG}{AM}=\frac{2}{3}\)

M là trung điểm HD

Nên G cũng là trọng tâm tam giác AHD  (*)

Xét tam giác ACD có  NA=ND

                                    NO//CD

=> O là trung điểm AD

=> HO là trung tuyếntam giác AHD(**)

Từ (*) và (**) => H,G,O thẳng hàng

10 tháng 2 2018

Làm kinh tinh cái gì z

bn xem thử nhé!!

chứng minh bài này có nhiều cách 
sau đây là một cách khá đơn giản (theo mình) 
xét trong △ABC có H,O lần lượt là trực tâm, tâm đường tròn ngoại tiếp của tam giác. 
gọi M là trung điểm của BC 
kẻ đường kính BK của (O) 
=>tam giác KCB = 90⁰ 
=>KC⊥BC 
H là trực tâm của △ABC 
=>AH⊥BC 
=>AH//KC 
tương tự AK//HC 
=>AHCK là hình bình hành 
=>AH=KC 
△BKC có O,M là trung điểm BK,BC 
=>OM là đường trung bình của △ 
=>OM=KC/2 
=>OM=AH/2 
gọi G là giao điểm AM và HO 
△AHG ∽ △MOG (gg) 
=>AH/OM=AG/GM 
hay AG/GM=2 
AM là trung tuyến của △ABC 
=> G là trọng tâm △ABC 
=> trong một tam giác trọng tâm, trực tâm, tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng

đúng thì t i c k nhé!! 45465465767568

12 tháng 6 2016

Ẹc ẹc mới học xong thi bay hết chữ rùi bạn ơi. Bài này hồi mình có giải trong vbt toán để mk lật xem lại

15 tháng 4 2016

Cho tam giác ABC có trực tâm H , trọng tâm G , O là tâm đường tròn 
ngoại tiếp , I là trung điểm BC , AD là đường kính của (O) . 
Chứng minh H , G , O thẳng hàng ? 
Giải : 
Ta có : góc DCA = góc DBA = 90 độ ( góc nội tiếp chắn 1/2 (O)) 
Xét tứ giác BHCD ta có : 
BH // DC ( vì cùng vuông góc với AC ) 
CH // DB ( vì cùng vuông góc với AB ) 
Do đó tứ giác BHCD là hình bình hành . 
===> H , I , D thẳng hàng và IH = ID (t/c đường chéo hbhành) 
Ta lại có : OI = 1/2 AH ( đ.trung bình tam giác DAH ) (1) 
GI = 1/2 GA (t/chất trọng tâm của ABC ) (2) 
góc HAG = góc GIO ( so le trong vì AH // OI ) (3) 
Do đó tam giác GAH đồng dạng tam giác GIO ( c.g.c) 
===> góc HGA = góc IGO (góc tương ứng của 2 t.giác đ.dạng ) 
Vì góc HGA và góc IGO là 2 góc ở vị trí đối đỉnh bằng nhau nên ta suy ra H , G , O thẳng hàng . 
Vậy trong 1 tam giác trực tâm , trọng tâm , tâm đường tròn ngoại tiếp cùng nằm trên 1 đường thẳng đó là đường thẳng Euler !

11 tháng 5 2016

 -Trọng tâm tam giác là giao điểm ba đường trung tuyến 
-Trực tâm tam giác là giao điểm bà đường cao kẻ từ 3 đỉnh tam giác 
-Giao điểm ba đường trung trực của tam giác là tâm của đường tròn NGOẠI TIẾP 
-Giao điểm ba đường phân giác trong của tam giác là tâm đường tròng NỘI TIẾP 
Còn các hệ thức trong tam giác vuông mình wên rồi, để bạn nào HS lớp 9 trả 

10 tháng 8 2016

Bài này là chứng minh đường thẳng ơ le. 
cách 1:
 

Gọi E,FE,F lần lượt là trung điểm của BC,AC. Ta có EF là đường trung bình của tam giác ABC nên EF//AB.
Ta lại có OF//BH(cùng vuông góc với ACA). Do đó : ˆOFE=ˆABH

Tương tự ˆOEF=ˆBAH

Từ đó ta có tam giác ABH đồng dạng với tam giác EFO

Suy ra AH/OE=AB/EF=2

mà AG/GE=2.
Do đó: AG/EG=AH/OE=2
mà ˆHAG=ˆOEG

⇒ΔHAG∼ΔEOG⇒ˆHGA=ˆEGO

nên ˆHGA+ˆAGO=ˆHGO=180

Vậy H,G,O thẳng hàng.
C2 : dùng véc tơ để tính
C3: dựng đường tròn 9 điểm => ...

10 tháng 8 2016

Ta có : góc DCA = góc DBA = 90 độ ( góc nội tiếp chắn \(\frac{1}{2}\) (O)) 
Xét tứ giác \(BHCD,\) ta có :  \(BH\) // \(DC\) ( vì cùng vuông góc với \(AC\)
                                                \(CH\)// \(DB\) ( vì cùng vuông góc với AB ) 
Do đó tứ giác \(BHCD\) là hình bình hành . 
\(\Rightarrow\) \(H,\)\(I,\)\(D\) thẳng hàng và \(IH=ID\) (tính chất đường chéo hình bình hành) 
Ta lại có : \(OI=\frac{1}{2}AH\) ( đường trung bình tam giác \(DAH\) )                                        \(\left(1\right)\) 
               \(GI=\frac{1}{2}GA\) (tính chất trọng tâm của \(ABC\) )                                               \(\left(2\right)\)
Góc\(HAG\) =    góc \(GIO\) ( so le trong vì \(AH\) // \(OI\) )                                               \(\left(3\right)\)
Do đó tam giác \(GAH\) đồng dạng tam giác \(GIO\) ( c.g.c) 
\(\Rightarrow\) góc \(HGA\) =    góc \(IGO\) (góc tương ứng của 2 tam giác đồng dạng ) 
Vì góc \(HGA\) và góc \(IGO\) là 2 góc ở vị trí đối đỉnh bằng nhau nên ta suy ra \(H,\) \(G,\)\(O,\)thẳng hàng . 
Vậy trong 1 tam giác trực tâm, trọng tâm, tâm đường tròn ngoại tiếp cùng nằm trên 1 đường thẳng đó là đường thẳng Euler !

5 tháng 4 2017

a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật

b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON

\(\Rightarrow\Delta OAN\)cân tại O (1)

Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)

\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)

c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC

5 tháng 4 2017

d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI

\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)

Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN

13 tháng 8 2021

A.

13 tháng 8 2021

A. Trọng tâm tam giác

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)