Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left|x+3\right|+\left|2-x\right|\ge\left|x+3+2-x\right|=\left|5\right|=5\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(B_{min}=5\Leftrightarrow x=0\)
a: \(A=\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi x=-1
b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)
Dấu '=' xảy ra khi x=0
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
\(D=\frac{x^2+8}{x^2+3}=\frac{x^2+3+5}{x^2+3}=1+\frac{5}{x^2+3}\)
ta có x^2+3>=3 => 5/(x^2+3)<=5/3
=> D = 8/3 tại x=0
câu b)
2(x-1)2 +3 >=3
=> C <= 1/3 tại x=1
vì x là số nguyên dương và lớn nhất nên x=3
=> \(f\left(3\right)=2.3^2+30=2.9+20=18+30=48\)
a)A=|\(x+5\)|\(+2-x\)
=> \(x+5=0\)
\(2-x=0\)
=>\(x=-5\)
\(x=2\)
Gía trị nhỏ nhất của A là :
|-5+5|=2-2
=|0|=0
=>=0
Vậy .....................