K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(P=\frac{1}{\sqrt{\frac{1}{2}\left(a-b\right)^2+\frac{1}{2}\left(a^2+b^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(b-c\right)^2+\frac{1}{2}\left(b^2+c^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(c-a\right)^2+\frac{1}{2}\left(c^2+a^2\right)}}\)

\(\Rightarrow P\le\frac{1}{\sqrt{\frac{1}{2}\left(a^2+b^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(b^2+c^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(c^2+a^2\right)}}\)

\(\Rightarrow P\le\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(b+c\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(c+a\right)^2}}\)

\(\Rightarrow P\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

\(\Rightarrow P\le\frac{2}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

\(\Rightarrow P_{max}=3\) khi \(a=b=c=1\)

NV
24 tháng 9 2019

Quen thôi bạn

Ở hầu hết các bài toán có xuất hiện \(\sqrt{a.x^2-b.xy+c.y^2}\) thì đều có thể tách về \(\sqrt{m\left(x-y\right)^2+...}\)

12 tháng 7 2018

Ta có \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

=> \(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\frac{1}{2}\left(a+b\right)}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Chứng minh tương tự, rồi cộng lại, ta có 

A\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

dấu = xảy ra <=> a=b=c=1

^_^

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

31 tháng 1 2019

Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)

                                                                               \(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)

                                                                                \(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

                                 \(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)

Cộng 3 vế của các bđt trên lại ta được

\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)

         \(=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)

                                                                          \(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)

                                                                       \(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\) 

                                                                         \(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)

Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

6 tháng 6 2019

.-.

Dễ dàng chứng minh được \(\hept{\begin{cases}a^2+b^2=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-b\right)^2\right]\\ab=\frac{1}{4}\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\end{cases}}\)

Khi đó : \(a^2+ab+b^2=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-b\right)^2\right]+\frac{1}{4}\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)

\(=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}+\frac{\left(a+b\right)^2}{4}-\frac{\left(a-b\right)^2}{4}\)

\(=\frac{3\left(a+b\right)^2}{4}+\frac{\left(a-b\right)^2}{4}\ge\frac{3\left(a+b\right)^2}{4}\)( vì \(\frac{\left(a-b\right)^2}{4}\ge0\))

Ta có : \(\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)

\(\Rightarrow\frac{1}{\sqrt{a^2+ab+b^2}}\le\frac{2}{\sqrt{3}\left(a+b\right)}\)

Hoàn toàn tương tự ta có \(\hept{\begin{cases}\frac{1}{\sqrt{b^2+bc+c^2}}\le\frac{2}{\sqrt{3}\left(b+c\right)}\\\frac{1}{\sqrt{c^2+ca+c^2}}\le\frac{2}{\sqrt{3}\left(a+c\right)}\end{cases}}\)

Công theo vế của 3 bđt ta được :

\(A\le\frac{2}{\sqrt{3}}\cdot2\cdot\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(=\frac{4}{\sqrt{3}}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

Đến đây ta chỉ cần tìm max \(B=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\)

Áp dụng bđt Cauchy-Schawarz dạng engel : \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{9}{2\cdot3}=\frac{3}{2}\)

Tuy nhiên bđt trên đã bị ngược dấu :( mọi người giúp mình với ạ

Ta có  a2+ab+b2=(a+b)2-ab\(\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{\left(3-c\right)^2}{4}\)

=> \(\frac{1}{\sqrt{a^2+ab+b^2}}\le\frac{2}{3-c}\)

Tương tự  \(\frac{1}{\sqrt{b^2+bc+c^2}}\le\frac{2}{3-a}\)

                          \(\frac{1}{\sqrt{c^2+ca+a^2}}\le\frac{2}{3-b}\)

=> \(A\le2\left(\frac{1}{3-a}+\frac{1}{3-b}+\frac{1}{3-c}\right)\)

Đến đây chứng minh <1 là xong

Dấu :"=" xảy ra khi a=b=c=1