K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a,ta có

bac + abc + acb =180 {định lý tổng 3 góc trong cùng 1 tam giác}

90 + 40 + acb=180

150 + acb=180

acb=180 - 150

acb=30 hay góc c bằng 30 độ

b,xét tam giác amc và bkm ta có

mk=mc

ma=mb

kmb=amc /hai góc đối đỉnh/

kbm=90 độ hay kb vuông góc với ab

30 tháng 12 2021

Xét tứ giác ACBK có

M là trung điểm của AB

M là trung điểm của CK

Do đó: ACBK là hình bình hành

Suy ra: KB//AC

hay KB⊥AB

27 tháng 12 2016

Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)

a) Xét tam giác EFA và tam giác CAB, có:

AE = AC ( giả thiết)

AF = AB (giả thiết)

Góc EAF = góc BAC (2 góc đối đỉnh)

=> ΔEAF = ΔCAB (c.g.c)

b) Vì ΔEFA = ΔCAB (Theo a)

=> Góc ABC = Góc EFA (cặp góc tương ứng)

=> EF = BC (cặp cạnh tương ứng) (1)

Mà EK = KF = 1/2 EF (2)

BD = DC = 1/2 BC (3)

Từ (1), (2) và (3)

=> KF = BD

Xét ΔKFB và ΔFBD, có

Cạnh BF chung

KF = BD (chứng minh trên)

Góc EFB = Góc ABC (chứng minh trên)

=> ΔKFB =ΔDBF (c.g.c)

=> KB = FD (cặp cạnh tương ứng)

28 tháng 3 2018

x=2009

28 tháng 5 2018

a) Xét \(\Delta\)ABC có: BC > AC > AB ( vì 10 > 8 > 6)

=> \(\widehat{A}>\widehat{B}>\widehat{C}\)

Ta có: BC2 = AB2 + AC2 (vì 102 = 62 + 82)

=> \(\Delta ABC\)vuông tại A

=> \(\widehat{A}=90^0\)

Vậy  \(\widehat{A}>\widehat{B}>\widehat{C}\)và \(\widehat{A}=90^0\).

Phần b) c) d) bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/1216956.html

7 tháng 11 2016

Hình học lớp 7

2 tháng 11 2016

Ta có hình vẽ:

K A B C M K I N

a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)

Xét Δ AMK và Δ BMC có:

AM = BM (cmt)

AMK = BMC (đối đỉnh)

MK = MC (gt)

Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)

b) Vì N là trung điểm của AC nên AN = NC

Xét Δ ANI và Δ CNB có:

AN = NC (cmt)

ANI = CNB (đối đỉnh)

NI = NB (gt)

Do đó, Δ ANI = Δ CNB (c.g.c)

=> AI = BC (2 cạnh tương ứng) (đpcm)

c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)

Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)

Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)

Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)

Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)

Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)

Mà AI = BC (câu b) => AK = AI (4)

Từ (3) và (4) => A là trung điểm của IK (đpcm)

2 tháng 11 2016

còn 1 bài nữa bn giúp mk nhé

soyeon_Tiểubàng giải

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

16 tháng 11 2015

a) Xét \(\Delta DNA\) và \(\Delta BCN\), có:

DN = NB (gt)

góc N1 = N2 (2 góc đối đỉnh)

AN = CN (N là TĐ của AC)

->\(\Delta DNA=\Delta BCN\) (c.g.c)

-> AD = BC (2 cạnh tương ứng)

-> góc A1 = góc ACB ( 2 góc tương ứng)

Mà góc A1 và góc ACB là 2 góc SLT 

-> AD//BC

Mình chỉ làm được ý a thôi hihi thông cảm

20 tháng 11 2017

bài 2) 

   Ta có:  16x : 2y = 128

    \(\Leftrightarrow\)24x : 2y = 27

    \(\Leftrightarrow\)24x - y = 27

   \(\Leftrightarrow\)4x - y = 7   (1)

Ta lại có:   x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y   (2)

Thay (2) vào (1) ta đc: 

            4*3y - y = 7

     \(\Leftrightarrow\)11y = 7

      \(\Leftrightarrow\)y = \(\frac{7}{11}\)

       \(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)

20 tháng 11 2017

3, 

A B C M N E F

a, Xét t/g AME và t/g BMC có:

MA = MB (gt)

ME = MC (gt)

góc AME = góc BMC (đối đỉnh)

Do đó t/g AME = t/g BMC (c.g.c)

b, Vì t/g AME = t/g BMC (câu a) =>  góc AEM = góc BCM (2 góc tương ứng)

Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC

c, Xét t/g ANF và t/g CNB có:

AN = CN (gt)

NF = NB (gt)

góc ANF = góc CNB (đối đỉnh)

Do đó t/g ANF = t/g CNB (c.g.c)

=> AF = BC (2 cạnh tương ứng)

d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)

Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC

Ta có: AE // BC, AF // BC 

=> AE trùng AF

=> A,E,F thẳng hàng (1)

Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)

Ta lại có: AE = BC, AF = BC => AE = AF (2)

Từ (1) và (2) => A là trung điểm của EF