\(\text{Cho các số a,b,c thỏa mãn:}\)

\(\frac{3}{a+b}=\frac{2}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

https://olm.vn/hoi-dap/detail/221248297106.html

tham khảo nhé

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)

\(\rightarrow a+b=a+b+c\)         \(\rightarrow c=0\)

\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)

9 tháng 1 2020

Ta có:

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}.\)

\(\Rightarrow\frac{a+b}{3}=\frac{b+c}{2}=\frac{c+a}{1}.\)

Đặt \(\frac{a+b}{3}=\frac{b+c}{2}=\frac{c+a}{1}=k\Rightarrow\left\{{}\begin{matrix}a+b=3k\\b+c=2k\\c+a=1k\end{matrix}\right.\)

\(a+b+b+c+c+a=3k+2k+1k\)

\(\Rightarrow2a+2b+2c=\left(3+2+1\right).k\)

\(\Rightarrow2.\left(a+b+c\right)=6k\)

\(\Rightarrow a+b+c=6k:2\)

\(\Rightarrow a+b+c=3k.\)

\(\Rightarrow c=3k-a-b\)

\(\Rightarrow c=3k-3b\)

\(\Rightarrow c=0.\)

Lại có: \(P=\frac{3a+3b+2019c}{a+b-2020c}\)

\(\Rightarrow P=\frac{3a+3b+2019.0}{a+b-2020.0}\)

\(\Rightarrow P=\frac{3a+3b+0}{a+b-0}\)

\(\Rightarrow P=\frac{3a+3b}{a+b}\)

\(\Rightarrow P=\frac{3.\left(a+b\right)}{a+b}\)

\(\Rightarrow P=3.\)

Vậy \(P=3.\)

Chúc bạn học tốt!

11 tháng 11 2021

\(\frac{1}{a+b}=\frac{2}{b+c}=\frac{3}{c+a}=\frac{1+2+3}{2\left(a+b+c\right)}=\frac{3}{a+b+c}.\)

11 tháng 11 2021

\(\Rightarrow\frac{3}{c+a}=\frac{3}{a+b+c}\Rightarrow c+a=a+b+c\Rightarrow b=0\)

\(\Rightarrow Q=\frac{a+2021b+c}{a+2022b+c}=\frac{a+c}{a+c}=1\)

4 tháng 1 2017

Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

31 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

31 tháng 10 2016

đặt a/b = c/d = k (k thuộc N) 

=> a = bk

c = dk

thay a và c vào 2 phân số cần so sánh thì = nhau

9 tháng 5 2019

ADTCSTSBN , ta được :

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)

\(\Rightarrow a+b=a+b+c\)\(\Rightarrow c=0\)

\(P=\frac{a+b-2019.0}{a+b+2018.0}=\frac{a+b}{a+b}=1\)

Vậy P = 1

9 tháng 5 2019

ta co

3/a+b=3/b+c=3/c+a

=>1:3/a+b=1:2/b+c=1:1/c+a

=>a+b/3=b+c/2=c+a/1

ap dung DTSBN, ta có

a+b/3=b+c/2=c+a/1+(a+b)+(b+c)+(c+a)/3+2+1=2a+2b+2c/6=2.(a+b+c)/6=a+b+c/3

vi a+b/3=a+b+c/3

=>a+b=a+b+c

=>c=0

=>p=a+b-2019.0/a+b+2018.0

=>p=a+b/a+b

=>p=1

KL

27 tháng 12 2019

Bạn tham khảo nè

https://olm.vn/hoi-dap/detail/221248297106.html

Học tốt

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)