Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)
Từ đó ta có lời giải bài toán làm tiếp đi nhé
Ta có : \(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-ab-9ab+3b^2=0\)
\(\Leftrightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=3a\left(L\right)\\a=3b\left(N\right)\end{matrix}\right.\)
Thế \(a=3b\) vào P ta được :
\(P=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)
Ta có :
3a2 + 3b2 = 10ab
<=> 3a2 + 3b2 - 10ab = 0
<=>4a2 - a2 + 4b2 - b2 - 8ab- 2ab = 0
<=> ( 4a2 - 8ab + 4b2 ) - ( a2 + 2ab + b2 ) = 0
<=> ( 2a + 2b )2 - ( a - b )2 = 0
<=> ( 2a + 2b )2 = ( a - b )2
<=> 2a + 2b = a - b ( 1 )
Thay (1) vào P ta được :
\(P=\frac{2a+2b}{a+b}\)
\(P=\frac{2\left(a+b\right)}{a+b}\)
\(P=2\)
Mạo danh cũng ko xong , chúa pain ko bao giờ nói " giúp pain đi " hay đúng hơn là t ko cần con người giải giúp mấy bài toán easy ntn này
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow3a^2-9ab-ab+3b^2=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
=>b=3a hoặc a=3b
TH1: b=3a
\(P=\dfrac{b-a}{b+a}=\dfrac{3a-a}{3a+a}=\dfrac{2a}{4a}=\dfrac{1}{2}\)
TH2: a=3b
\(P=\dfrac{b-3b}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Th1: P=0
TH2: P=-1