\(\text{Cho }a>b>0\)\(và\)\(3a^2+3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)

Từ đó ta có lời giải bài toán làm tiếp đi nhé

10 tháng 12 2017

các bn giúp mình vs nha

24 tháng 9 2018

Ta có : \(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2-ab-9ab+3b^2=0\)

\(\Leftrightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=3a\left(L\right)\\a=3b\left(N\right)\end{matrix}\right.\)

Thế \(a=3b\) vào P ta được :

\(P=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)

23 tháng 5 2018

Ta có :

3a2 + 3b2 = 10ab

<=> 3a2 + 3b2 - 10ab = 0

<=>4a- a2 + 4b2  - b- 8ab- 2ab = 0

<=> ( 4a2 - 8ab + 4b2 ) - ( a2 + 2ab + b2 ) = 0

<=> ( 2a + 2b )2 - ( a - b )2 = 0

<=> ( 2a + 2b )2 = ( a - b )2

<=> 2a + 2b = a - b  ( 1 )

Thay (1) vào P ta được :

\(P=\frac{2a+2b}{a+b}\)

\(P=\frac{2\left(a+b\right)}{a+b}\)

\(P=2\)

23 tháng 5 2018

Mạo danh cũng ko xong , chúa pain ko bao giờ nói " giúp pain đi "  hay đúng hơn là t ko cần con người giải giúp mấy bài toán easy ntn này

Y
4 tháng 6 2019

gt \(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Rightarrow a-3b=0\) ( do \(3a-b>0\forall a>b>0\))

\(\Rightarrow a=3b\)

khi đó \(P=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

\(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow3a^2-9ab-ab+3b^2=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

=>b=3a hoặc a=3b

TH1: b=3a

\(P=\dfrac{b-a}{b+a}=\dfrac{3a-a}{3a+a}=\dfrac{2a}{4a}=\dfrac{1}{2}\)

TH2: a=3b

\(P=\dfrac{b-3b}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)