Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=3^n\cdot27+5^n\cdot125+3^n\cdot3+5^n\cdot25\)
\(=3^n\cdot30+5^n\cdot150\)
Vì \(3^n\cdot30\) chia 60 dư 30(do 3n là số lẻ)
và \(5^n\cdot150\) chia 60 dư 30(do 5n là số lẻ)
nên A chia hết cho 60
c: a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a-b}{c-d}\right)^{2003}=\left(\dfrac{bk-b}{dk-d}\right)^{2003}=\left(\dfrac{b-1}{d-1}\right)^{2003}\)
\(\dfrac{a^{2005}+b^{2005}}{c^{2005}+d^{2005}}=\dfrac{b^{2005}k^{2005}+b^{2005}}{d^{2005}k^{2005}+d^{2005}}=\dfrac{b^{2005}}{d^{2005}}\)
=>Đề sai rồi bạn
Bài 1:
a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Vì \(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)
Chúc bạn học tốt!
n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)
\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n
+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )
+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)
\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )
+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)
\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )
Vậy n là tất cả các số tự nhiên chia 3 dư 1.
Đỗ Đức Lợi làm thiếu rồi :))
\(A=2005^n+n^{2005}+2005.n⋮3\)
Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1
=>2005n=3k+1(k\(\in N\))
Xét +) n=3k ta có A =2005n+n2005.n
A=(3k+1+3k+3k):3 dư 1
=> loại n=3k
+)n=3k+1 ta có A=3k+1+3k+1+3k+1
A=9k+3
A=3(k+1) \(⋮\)3
+)n=3 k+2 Ta có :
A=3k+1+3k+2+3k+2
A=9k +5 :3 dư 2
=>n=3k+2 ( loại )
Với n=3k+1 thì A=3(k+1) chia hết cho 3
bt lm thì lm đi Hung nguyen , mình cx chưa bt làm thế nào, khó vãi
cho hỏi chút
\(\frac{a}{b}=\frac{c}{d}\)
trong đó
\(a=c\) hay \(a\ne c\)
\(b=d\) hay \(b\ne d\)
( bài có thiếu điều kiện ko vậy )