Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E= 7/4x7 + 7/7x10 =7/10x13+...+ 7/301x304
\(=\frac{7}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right)\)
\(=\frac{7}{3}\left(\frac{1}{4}-\frac{1}{304}\right)\)
\(=\frac{7}{3}\cdot\frac{75}{304}\)
\(=\frac{175}{304}\)
E = \(\frac{7}{4.7}+\frac{7}{7.10}+\frac{7}{10.13}+...+\frac{7}{301.304}\)
=\(\frac{7}{3}.\frac{7-4}{4.7}+\frac{7}{3}.\frac{10-7}{7.10}+\frac{7}{3}.\frac{13-10}{10.13}+...+\frac{7}{3}.\frac{304-301}{301.304}\)
= \(\frac{7}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{301}-\frac{1}{304}\right)\)=\(\frac{7}{3}.\left(\frac{1}{4}-\frac{1}{304}\right)=\frac{7}{3}.\frac{75}{304}=\frac{175}{304}\)
3/(1×4)+3/(4×7)+3/(7×10)+3/(10×13)+3/(13×16)
=1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16
=1-1/16
=15/16
31 x 434 x 737 x 10310 x 13 = 1.3289876e+12
mik phải dùng máy tính chứ có sịp nhân mới trả lời đc
nhỉ ?????
\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+....+\dfrac{5}{25\times28}+\dfrac{5}{28\times31}\)
\(=5\times\left(\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{28\times31}\right)\)
\(=\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+....+\dfrac{3}{28\times31}\right)\)
\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\)
\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{31}\right)\)
\(=\dfrac{5}{3}\times\dfrac{27}{124}\)
\(=\dfrac{45}{124}\)
`#3107`
\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+...+\dfrac{5}{25\times28}+\dfrac{5}{28\times31}\)
\(=\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{25\times28}+\dfrac{3}{28\times31}\right)\)
\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\ =\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{31}\right)\\ =\dfrac{5}{3}\times\dfrac{27}{124}\\ =\dfrac{45}{124}\)
\(A=\dfrac{5}{4x7}+\dfrac{5}{7x10}+...+\dfrac{5}{25x28}+\dfrac{5}{28x31}\)
\(\dfrac{3}{5}A=\dfrac{7-4}{4x7}+\dfrac{10-7}{7x10}+...+\dfrac{28-25}{25x28}+\dfrac{31-28}{28x31}\)
\(\dfrac{3}{5}A=\dfrac{7}{4x7}-\dfrac{4}{4x7}+\dfrac{10}{7x10}-\dfrac{7}{7x10}+...+\dfrac{28}{25x28}-\dfrac{25}{25x28}+\dfrac{31}{28x31}-\dfrac{28}{28x31}\)
\(\dfrac{3}{5}A=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}+\dfrac{1}{28}-\dfrac{1}{31}\)
\(\dfrac{3}{5}A=\dfrac{1}{4}-\dfrac{1}{31}=\dfrac{27}{124}\)
\(A=\dfrac{27}{124}:\dfrac{3}{5}=\dfrac{27}{124}x\dfrac{5}{3}=\dfrac{45}{124}\)
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)
A= 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16 + .... + 1/97 - 1/100
A= 1/7 - 1/100
A= 93/700
\(A=\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+...+\frac{3}{97.100}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{37}-\frac{1}{100}\)
\(A=\frac{1}{7}-\frac{1}{100}\)
\(A=\frac{93}{700}\)
\(\dfrac{5}{4\text{x}7}+\dfrac{5}{7\text{x}10}+...+\dfrac{5}{58\text{x}61}\)
\(=\dfrac{5}{3}\text{x}\left(\dfrac{3}{4\text{x}7}+\dfrac{3}{7\text{x}10}+...+\dfrac{3}{58\text{x}61}\right)\)
\(=\dfrac{5}{3}\text{x}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{58}-\dfrac{1}{61}\right)\)
\(=\dfrac{5}{3}\text{x}\left(\dfrac{1}{4}-\dfrac{1}{61}\right)=\dfrac{5}{3}\text{x}\dfrac{57}{244}=\dfrac{95}{244}\)
\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+\dfrac{5}{10\times13}+...+\dfrac{5}{58\times61}\\ =\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+...+\dfrac{3}{58\times61}\right)\\ =\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{58}-\dfrac{1}{61}\right)\\ =\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{61}\right)\\ =\dfrac{5}{3}\times\dfrac{57}{244}=\dfrac{95}{244}\)