Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3sinx-4cosx}{cosx+2sinx}=\frac{\frac{3sinx}{cosx}-4}{1+\frac{2sinx}{cosx}}=\frac{3tanx-4}{1+2tanx}=\frac{3.5-4}{1+2.5}=...\)
\(B=\frac{\frac{sinx}{cos^3x}+\frac{sin^3x}{cos^3x}}{\frac{3cos^3x}{cos^3x}+\frac{cosx}{cos^3x}}=\frac{tanx.\frac{1}{cos^2x}+tan^3x}{3+\frac{1}{cos^2x}}=\frac{tanx\left(1+tan^2x\right)+tan^3x}{3+\left(1+tan^2x\right)}=\frac{5\left(1+5^2\right)+5^3}{3+1+5^2}=...\)
đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:
\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)
\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)
\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)
\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)
\(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0;cosx< 0;tanx>0;cotx>0\)
\(tanx-3cotx=6\Leftrightarrow tanx-\frac{3}{tanx}=6\)
\(\Leftrightarrow tan^2x-6tanx-3=0\Rightarrow\left[{}\begin{matrix}tanx=3+2\sqrt{3}\\tanx=3-2\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)
\(\frac{1}{cos^2x}=1+tan^2x\Rightarrow cos^2x=\frac{1}{1+tan^2x}\Rightarrow cosx=\frac{-1}{\sqrt{1+tan^2x}}\) (do \(cosx< 0\))
\(\Rightarrow cosx=\frac{-1}{\sqrt{22+12\sqrt{3}}}\Rightarrow sinx=-\sqrt{1-cos^2x}=-\sqrt{\frac{15+6\sqrt{3}}{26}}\)
\(cotx=\frac{1}{tanx}=\frac{1}{3+2\sqrt{3}}\)
Số xấu dữ dội, bạn tự thay vào kết quả :(
\(\frac{1+2sinx.cosx}{sin^2x-cos^2x}=\frac{sin^2x+cos^2x+2sinx.cosx}{\left(sinx-cosx\right)\left(sinx+cosx\right)}\)
\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)\left(sinx+cosx\right)}=\frac{sinx+cosx}{sinx-cosx}\)
\(=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{sinx}{cosx}-\frac{cosx}{cosx}}=\frac{tanx+1}{tanx-1}\)
\(sinx\left(1+cos2x\right)=sinx\left(1+2cos^2x-1\right)=2sinx.cosx.cosx=sin2x.cosx\)
\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=\frac{-cos2x}{\frac{1}{2}sin2x}=-\frac{2}{tan2x}\)
\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}\left(\frac{1+cosx}{cosx}\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}.\frac{2cos^2\frac{x}{2}}{cosx}=\frac{2sin\frac{x}{2}.cos\frac{x}{2}}{cosx}=\frac{sinx}{cosx}=tanx\)
ĐK: x \(\ne\frac{\pi}{2}+k\pi\)
pt <=> \(3\sin x.\cos x+2\cos^2x=3\cos x+3\sin x-1\)
<=> \(3\sin x\left(\cos x-1\right)+\left(2\cos x-1\right)\left(\cos x-1\right)=0\)
<=> \(\left(\cos x-1\right)\left(3\sin+2\cos x-1\right)=0\)ok. Tự làm tiếp nha!