\(\text{2x^3 +15x^2+22x-15 = (2x-a)(x+b)(x+c)}\)

Tính a+ b+c.

Giải giúp mình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Thêm một đk: a, b, c là số nguyên

Có: \(2x^3+15x^2+22x-15\)

\(=\left(2x^3-x^2\right)+\left(16x^2-8x\right)+\left(30x-15\right)\)

\(=x^2\left(2x-1\right)+8x\left(2x-1\right)+15\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x^2+8x+15\right)\)

\(\left(2x-1\right)\left[\left(x^2+3x\right)+\left(5x+15\right)\right]\)

\(=\left(2x-1\right)\left(x+3\right)\left(x+5\right)\)

Theo bài ra :  \(2x^3+15x^2+22x-15=\left(2x-a\right)\left(x+b\right)\left(x+c\right)\)

=> a + b + c  = 1 + 3 + 5 = 9.

30 tháng 11 2019

\(a,\frac{15x^2y^4}{5x^3z}=\frac{3y^4}{x}\)

\(b,\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

\(c,\frac{5x^2+10xy+5y^2}{15x+15y}=\frac{5\left(x^2+2xy+y^2\right)}{15\left(x+y\right)}=\frac{5\left(x+y\right)^2}{15\left(x+y\right)}=\frac{x+y}{3}\)

\(d,\frac{2x^3-2}{11x^2-22x+11}=\frac{2\left(x^3-1\right)}{11\left(x^2-2x+1\right)}=\frac{2\left(x-1\right)\left(x^2+x+1\right)}{11\left(x-1\right)^2}=\frac{2\left(x^2+x+1\right)}{11\left(x-1\right)}\)

20 tháng 8 2020

1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)

\(=3xya^2+3xyb^2+abx^2+ab9y^2\)

\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)

\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)

\(=\left(3ya+xb\right)\left(3yb+ax\right)\)

2.Check lại đề hộ mình nha:((

22 tháng 8 2020

Câu 2 nên sủa lại đề nha

2. xy(a2+2b2)+ab(2x2+y2)

=xya2+xy2b2+ab2x2+aby2

=(xya2+aby2)+(xy2b2+ab2x2)

=ay(ax+by)+2bx(by+ax)

=(ax+by(ay+2bx)

24 tháng 9 2016

Dùng phương pháp !!!!!!!Hệ Số Bất Định!!!!!!

23 tháng 9 2016

khó wa!

7 tháng 12 2020

a,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)

\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)

\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-1\right).2x}{2x\left(x-1\right)\left(x+1\right)}-\frac{2.2\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3}{2x\left(x+1\right)\left(x-1\right)}+\frac{4x^2-2x}{2x\left(x-1\right)\left(x+1\right)}-\frac{4x^2-4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3+4x^2-2x-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)

\(b,\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

\(=\frac{3x.2\left(x-y\right)}{10\left(x+y\right).\left(x-y\right)}-\frac{x.\left(x+y\right)}{10\left(x-y\right).\left(x+y\right)}\)

\(=\frac{6x^2-6xy}{10\left(x+y\right)\left(x-y\right)}-\frac{x^2+xy}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{6x^2-6xy-x^2+xy}{10\left(x+y\right)\left(x-y\right)}\)

\(=\frac{5x^2-5xy}{10\left(x+y\right)\left(x+y\right)}\)

\(=\frac{5x\left(x-y\right)}{10\left(x-y\right)\left(x+y\right)}=\frac{x}{2\left(x+y\right)}\)

15 tháng 1 2017

a)\(2x^3=x^2+2x-1\Leftrightarrow2x^3-x^2-2x+1=0\Leftrightarrow x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-1\right)=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(x+1\right)=0\)

<=> 2x-1=0 hoặc x-1=0 hoặc x+1=0 <=> x=1/2 hoặc x=1 hoặc x=-1

b)\(x^2-4+\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

15 tháng 1 2017

a) 1

b) 2

28 tháng 5 2017

a)\(9x^2-6x+2=\left(9x^2-6x+1\right)+1=\left(3x-1\right)^2+1\)

Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow9x^2-6x+2=\left(3x-1\right)^2+1\ge1>0\forall x\)

=>Biểu thức luôn dương với mọi x

b)\(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(1+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

c)\(2x^2+2x+1=\left(2x^2+2x+\frac{1}{2}\right)+\frac{1}{2}=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

28 tháng 5 2017

cho hỏi công tử bột là j

16 tháng 1 2017

a)\(\frac{3}{7}x\)-1=\(\frac{1}{7}x\)(3x-7)                                                                                                                                                                  <=>\(\frac{3}{7}x-1\)=\(\frac{3}{7}x^2-1\)<=>\(\frac{3}{7}x\)-\(\frac{3}{7}x^2\)=0<=>\(\frac{3}{7}x\)=\(\frac{3}{7}x^2\)                                                                                     <=>\(\frac{\frac{3}{7}}{\frac{3}{7}}\)=\(\frac{x^2}{x}\)<=>\(1=x\)