Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
1, Ta có :
a . 81 = 34 => 3x= 34 => x = 4 .
b. 125 = 53 => 5x+2 = 53 =>x + 2 = 3 => x = 1
c. 23 * 2x - 1 = 64
=> 23 + ( x - 1 ) = 64 = 26
=> 3 + ( x - 1 ) = 6
=> x - 1 = 6 - 3 = 3
x = 3 + 1
x = 4
\(\left(A\right)125^{80}và25^{118}\)
\(125^{80}=\left(5^3\right)^{80}=5^{3.80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{2.118}=5^{236}\)
Vì \(5^{240}>5^{236}\)nên \(125^{80}>25^{118}\)
\(\left(B\right)4^{21}và64^7\)
\(4^{21}\)giữ nguyên
\(64^7=\left(4^3\right)^7=4^{3.7}=4^{21}\)
Vì \(4^{21}=4^{21}\)nên \(4^{21}=64^7\)
dễ mà bạn,mình chưa học mà mình biết rồi nè.
a,\(4^n.2^n=512\)
\(\Rightarrow2^{2n}.2^n=512\Rightarrow2^{3n}=2^9\Rightarrow3n=9\Rightarrow n=3\)
b,\(3^n+3^{n+3}=252\)( sửa đề )
\(\Rightarrow3^n.\left(1+3^3\right)=252\Rightarrow3^n.28=252\Rightarrow3^n=9\Rightarrow n=2\)
c,\(2.3^{2x+2}=18\)
\(\Rightarrow3^{2n+2}=9\Rightarrow2n+2=2\Rightarrow n=0\)
d,\(x^2=2^3+3^2+4^3\)
\(\Rightarrow x^2=8+9+64\Rightarrow x^2=81\Rightarrow x^2=9^2=\left(-9\right)^2\Rightarrow x=9\)hoặc \(x=-9\)
e,\(x^5=x^9\)
\(\Rightarrow x^9-x^5=0\Rightarrow x^5.\left(x^4-1\right)=0\Rightarrow\hept{\begin{cases}x^5=0\\x^4-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\\x=-1\end{cases}}}\)
f,\(\left(x-4\right)^3=\left(x-4\right)^{10}\)
\(\Rightarrow\left(x-4\right)^{10}-\left(x-4\right)^3=0\Rightarrow\left(x-3\right)^3.\left[\left(x-3\right)^7-1\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^3=0\\\left(x-3\right)^7=1\end{cases}\Rightarrow\hept{\begin{cases}x-3=0\\x-3=1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\x=4\end{cases}}}\)
18^3 : 9^3 = 5832 : 729 = 8
125^3 : 25^3 = (5^3)^3 : (5^2)^3 = 5^9 : 5^6 = 5^3 = 125
có quy luật hay lắm
\(18^3:9^3=\left(18:9\right)^3=2^3=8\)
\(125^3:25^3=\hept{\begin{cases}\left(5^3\right)^3:\left(5^2\right)^3=5^9:5^6=5^3=125\\\left(5^3\right)^3:\left(5^2\right)^3=\left(5^3:5^2\right)^3=5^3=125\end{cases}}\)chọn cách nào thì tùy bạn
\(\left(10^3+10^4+125^3\right):5^3=\left[10^3+10^3.10+\left(5^2\right)^3\right]:5^3\)
\(=\left(10^3.11+5^6\right):5^3\)
\(=10^3.11:5^3+5^6:5^3\)
\(=\left(10^3:5^3\right).11+5^3\)
\(=2^3.11+5^3\)
\(=88+125=213\)
\(\left(2^{43}+2^4\right):\left(2^{39}+1\right)=\)tương tự mà làm