Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đoạn thẳng được nối từ 2 trong 2012 điểm là :
2012 × ( 2012 - 1 ) ÷ 2 = 2023066
Trong 2023066 đoạn thẳng đó có 2012 đoạn thẳng là cạnh của đa giác.
Vậy số đường chéo được tạo thành từ đa giác 2012 cạnh là :
2023066 - 2012 = 2021054
Chúc bạn học tốt!
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)
hình n giác vẽ các đường chéo từ 1 đỉnh bất kỳ của đa giác đó
khi đó các đuờng chéo và các cạnh tạo thành (n-2) tam giác
nên ta được tổng số đo các góc của n giác chính là tổng số đo của ( n -2) tam giác
suy ra : tổng số đo các góc là : ( n- 2) . 180
học tốt
Đặt n(n-3)/2 (*)
*)Với n=4 => có 4(4-3)/2=2
=> * đúng với n =2
*)Giả sử (*)đúng với n=k có => k(k-3)/2 với đa giác lồi có k cạnh
*) Ta chứng minh cho (*) đúng với n=k+1 <=> đa giác lồi k+1 cạnh có (k+1)(k-2)/2 đường chéo.
Thật vậy,để ý rằng,đa giác lồi có k cạnh nếu thêm 1 đỉnh sẽ có thêm k-1 đường chéo
=>
số đường chéo của đa giác lồi k+1 cạnh là :
k(k-3)/2 +k-1= (k^2-k-2)/2=(k+1)(k-2)/2 (đúng)
=> đpcm
\(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=a^2+b^2+M\)
\(S_{ABCD}\)nhỏ nhất khi M nhỏ nhất
BĐT Cosi \(\left(S_{AOD}+S_{BOC}\right)^2\ge4\cdot S_{AOD}\cdot S_{BOC}\)
\(\Rightarrow\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}\cdot S_{BOC}\)(*)
Dấu "=" khi và chỉ khi SAOD=SBOC
Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao kẻ từ A => \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\left(1\right)\)
Tương tự với \(\Delta COD\)và \(\Delta COB\)=> \(\frac{S_{COB}}{S_{COD}}=\frac{OB}{OD}\left(2\right)\)
Từ (1) và (2) => \(\frac{S_{AOB}}{S_{AOD}}=\frac{S_{COB}}{S_{COD}}\)
\(\Rightarrow S_{AOD}\cdot S_{BOC}=S_{AOB}\cdot S_{COD}=a^2b^2\)
Khi đó (*) => \(\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\frac{S_{AOD}+S_{BOC}}{a}\ge2\left|a\right|\left|b\right|\)
\(\Rightarrow S_{ABCD}=a^2+b^2+M\ge a^2+b^2+2\left|a\right|\left|b\right|=\left(\left|a\right|+\left|b\right|\right)^2\)
Vậy SABCD nhỏ nhất =(|a|+|b|)2 <=> SAOD=SBOC
giá trị lớn nhất của n