K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

a) Vì ABCD là hình bình hành (gt) => - AB // CD (t/c) => \(\widehat{AND}=\widehat{CDK}\left(\widehat{ANM}=\widehat{CDM}\right)\) (so le trong)

- AD // BC (t/c) => \(\widehat{ADN}=\widehat{DKC}\) (so le trong)

Xét \(\Delta DAN\) và \(\Delta KCD\) có: \(\widehat{AND}=\widehat{CDK}\)\(\widehat{ADN}=\widehat{DKC}\) (cmt)

\(\Rightarrow\Delta DAN~\Delta KCD\left(g.g\right)\Rightarrow\frac{DN}{DK}=\frac{AN}{CD}\)  (tỉ lệ) (1)

Xét \(\Delta MNA\) và \(\Delta MDC\) có: \(\widehat{ANM}=\widehat{CDM}\) (cmt), \(\widehat{AMN}=\widehat{DMC}\) (đối đỉnh)

\(\Rightarrow\Delta MNA~\Delta MDC\left(g.g\right)\Rightarrow\frac{MN}{DM}=\frac{AN}{CD}\) (tỉ lệ) (2)

Từ (1) và (2)  \(\Rightarrow\frac{DN}{DK}=\frac{MN}{DM}\)

\(\Rightarrow DK\cdot MN=DN\cdot DM\)

\(\Rightarrow DK\left(DN-DM\right)=DN\cdot DM\)

\(\Rightarrow DK\cdot DN-DK\cdot DM=DN\cdot DM\)

\(\Rightarrow DK\cdot DN=DK\cdot DM+DN\cdot DM\)

\(\Rightarrow DK\cdot DN=DM\left(DK+DN\right)\)

\(\Rightarrow\frac{DK\cdot DN}{DK+DN}=DM\)

\(\Rightarrow\frac{DK+DN}{DK\cdot DN}=\frac{1}{DM}\)

\(\Rightarrow\frac{DK}{DK\cdot DN}+\frac{DN}{DK\cdot DN}=\frac{1}{DM}\)

\(\Rightarrow\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\) (đpcm)

b) Vì \(\Delta DAN~\Delta KCD\) (cm câu a) \(\Rightarrow\frac{AD}{CK}=\frac{AN}{CD}\) (tỉ lệ)

\(\Rightarrow CK\cdot AN=AD\cdot CD\)

Vì AD và CD cố định nên \(AD\cdot CD\) không đổi với mọi vị trí đường thẳng d

\(\Rightarrow CK\cdot AN\) không đổi (không phụ thuộc vào vì trí đường thẳng d) (đpcm)

19 tháng 10 2017

Bài này bạn lấy ở đâu thế

27 tháng 1 2018

câu c có sai đề ko bạn ơi

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

a)

\(AB\parallel CD\) nên áp dụng định lý Ta-let ta có:

\(\frac{DM}{MN}=\frac{MC}{AM}(1)\)

Kẻ \(MT\parallel AB\parallel CD\). Áp dụng định lý Ta-let:

+) Cho tam giác $KDC$: \(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)

+) Cho tam giác $ACB$: \(\frac{MT}{AB}=\frac{MC}{AC}\)

\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Rightarrow \frac{MK}{MK+DM}=\frac{MC}{MC+AM}\)

\(\Rightarrow \frac{MK}{DM}=\frac{MC}{AM}(2)\)

Từ \((1);(2)\Rightarrow \frac{DM}{MN}=\frac{MK}{DM}\Rightarrow DM^2=MN.MK\) (đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

b)

Áp dụng liên hoàn định lý Ta-let cho các đoạn song song:

\(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)

\(\frac{MT}{AB}=\frac{MC}{AC}\)

\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Leftrightarrow 1-\frac{MK}{DK}=1-\frac{MC}{AC}\)

\(\Rightarrow \frac{DM}{DK}=\frac{AM}{AC}(1)\)

Và: \(\frac{DM}{MN}=\frac{MC}{AM}\Rightarrow \frac{DM}{DM+MN}=\frac{MC}{MC+AM}\)

\(\Rightarrow \frac{DM}{DN}=\frac{MC}{AC}(2)\)

Từ \((1);(2)\Rightarrow \frac{DM}{DK}+\frac{DM}{DN}=\frac{AM+MC}{AC}=1\)

\(\Rightarrow \frac{1}{DK}+\frac{1}{DN}=\frac{1}{DM}\)

Ta có đpcm.

Y
13 tháng 2 2019

1. A B C D M N K E F

a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)

+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)

\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)

b) + Qua M kẻ EF // AB // CD

+ AD // CK

=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)

\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)

+ ME // AN

\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)

=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)

\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)

\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)

* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )

17 tháng 2 2020

a) Ta có : AD // CK => MK\MD=CM\AM(1)

CD // AN => MD\MN=CM\AM(2)

Từ (1) và (2) suy ra MK\MD=MD\MN⇒MD2=MK.MN