\(\left(m-1\right)x^2+2\left(m-1\right)x+4,\forall x\in R\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Đề viết thiếu, để ... (biểu thức trên) lớn hơn 0, ...

28 tháng 9 2018

m thuộc (1;5)?

NV
12 tháng 6 2020

\(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(3m+7\right)< 0\)

\(\Leftrightarrow m^2-m-6< 0\)

\(\Rightarrow-2< m< 3\)

NV
14 tháng 3 2020

Để tam thức ko đổi dấu trên R

\(\Leftrightarrow\Delta'< 0\)

\(\Leftrightarrow\left(m+1\right)^2-\left(m^2+2\right)^2< 0\)

\(\Leftrightarrow\left(m^2+m+3\right)\left(-m^2+m-1\right)< 0\)

\(\Leftrightarrow\left(m^2+m+3\right)\left(m^2-m+1\right)>0\) (luôn đúng)

Vậy với mọi m thì \(f\left(x\right)>0\)

NV
25 tháng 4 2019

Hệ điều kiện: \(\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left(m-1\right)^2-\left(3m+6\right)\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-2m^2-11m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m\le-5\\m\ge-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge-\frac{1}{2}\)

NV
1 tháng 5 2020

Do \(a=-1< 0\) nên để điều kiện bài toán thỏa mãn thì:

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-2m+1>0\\x_1\le0< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-f\left(0\right)\le0\\-f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m\le0\\0\le0\end{matrix}\right.\)

\(\Rightarrow m\ge\frac{1}{2}\)

14 tháng 12 2022

cô ơi rk đề cho f(x)>0 mà khi thay (0;1) lai thành f(x)<= vậy ạ

 

12 tháng 3 2020

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1< 0\text{ ∀x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-9m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-8m^2+36m-16< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< \frac{3}{7}\)