Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0
suy ra denta= (2m+1)^2-4.(m^2+1)>0
suy ra : m>3/4
Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)
Ta có: P∈Z
⇒4P∈Z
⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z
⇒2m+1=Ư(5)={−5;−1;1;5}
⇒m={−3;−1;0;2}
Kết hợp đk m>3/4 ta được m=2
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
1 + x + 1 − x + 4 1 − x 2 = m 1
Điều kiện: − 1 ≤ x ≤ 1
Đặt t = 1 + x + 1 − x ≥ 0 ⇒ t 2 = 2 + 2 1 − x 2
Do 2 ≤ t 2 ≤ 4 nên t ∈ 2 ; 2
Trở thành t + 2 t 2 − 2 = m ⇔ 2 t 2 + t − 4 + m = 0 ( 2 )
Để (1) có nghiệm thì (2) có nghiệm t ∈ 2 ; 2
Tức là: Δ = 1 + 4.2 4 + m = 8 m + 33 ≥ 0 2 ≤ − 1 − 8 m + 33 4 ≤ 2 2 ≤ − 1 + 8 m + 33 4 ≤ 2 ⇔ m ≥ − 33 8 4 2 + 1 ≤ 8 m + 33 ≤ 9
⇔ m ≥ − 33 8 2 ≤ m ≤ 6 ⇔ 2 ≤ m ≤ 6
Vậy m ∈ 2 ; 6 thì phương trình đã cho có nghiệm
Đáp án cần chọn là: C
Ta có bất phương trình x 2 - 3x + 2 ≤ 0 ⇔ 1 ≤ x ≤ 2.
Yêu cầu bài toán tương đương với bất phương trình:
m x 2 – 2(2m + 1)x + 5m + 3 ≤ 0 (1) có nghiệm x ∈ S = [1;2].
Ta đi giải bài toán phủ định là: Tìm m để bất phương trình (1) vô nghiệm trên S
Tức là bất phương trình f(x) = m x 2 - 2(2m + 1)x + 5m + 3 < 0 (2) đúng với mọi x ∈ S.
• m = 0 ta có (2) -2x + 3 < 0 ⇔ x > 3/2 nên (2) không đúng với ∀x ∈ S
• m ≠ 0 tam thức f(x) có hệ số a = m, biệt thức Δ' = - m 2 + m + 1
Bảng xét dấu
Ta có: x 2 + 1 x 2 − 2 m x + 1 x + 1 = 0
x + 1 x 2 − 2 m x + 1 x − 1 = 0 ( 1 )
Đặt x + 1 x = t , t ≥ 2 ta được t 2 − 2 m t − 1 = 0 ( 2 )
Phương trình (2) luôn có hai nghiệm t 1 < 0 < t 2 d o a , c = - 1 < 0 a ⇒ phương trình (1) có nghiệm khi và chỉ khi phương trình (2) có ít nhất một nghiệm t sao cho t ≥ 2 , hay ít nhất một trong hai số 2; −2 phải nằm giữa hai nghiệm t 1 , t 2 hay f ( 2 ) ≤ 0 f ( − 2 ) ≤ 0 ⇔ 3 − 4 m ≤ 0 3 + 4 m ≤ 0 ⇔ m ≥ 3 4 m ≤ − 3 4
Đáp án cần chọn là: B
Phương trình có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 13 4
⇔ a ≠ 0 Δ ≥ 0 − b a = 13 4 ⇔ m ≠ 0 m 2 − 3 3 − 4 m 2 ≥ 0 − m 2 − 3 m = 13 4
⇔ m ≠ 0 m 2 − 3 − 2 m m 2 − 3 + 2 m ≥ 0 4 m 2 + 13 m − 12 = 0
⇔ m ≠ 0 m + 1 m − 3 m − 1 m + 3 ≥ 0 m = 3 4 ; m = − 4
⇔ m ≠ 0 m ∈ − ∞ ; − 3 ∪ − 1 ; 1 ∪ 3 ; + ∞ m = 3 4 ; m = − 4 ⇔ m = 3 4 m = − 4
Vậy tổng bình phương các giá trị của m là: 265 16
Đáp án cần chọn là: A
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-4\left(m+2\right)\left(m-1\right)\ge0\\x_1x_2=\dfrac{m+2}{m-1}< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-4m+8\ge0\\-2< m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge2\\-2< m< 1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
ĐỀ bÀI \(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2m\left(x+\frac{1}{x}\right)-1=0\left(1\right)\)
đặt \(t=x+\frac{1}{x},\left|t\right|\ge2\)
ta có \(t^2-2mt-1=0\left(2\right)\)
PT(2) luôn có 2 nghiệm \(t_1< 0< t_2\)=> PT (1) có nghiệm khi zà chỉ khi PT(2) có ít nhất 1 nghiệm t sao cho \(\left|t\right|\ge2\)
hay ít nhất 2 số 2 zà -2 phải nằm giữa 2 nghiệm (t1) zà (t2)
hay \(\orbr{\begin{cases}f\left(2\right)\le0\\f\left(-2\right)\le0\end{cases}=>\orbr{\begin{cases}3-4m\le0\\3+4m\le0\end{cases}=>\orbr{\begin{cases}m\ge\frac{3}{4}\\m\le-\frac{3}{4}\end{cases}}}}\)
#Quá Khứ . IS !