\(\dfrac{x^2+x-1}{1-x}-x\) là

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Bạn xem lại đề, đề thiếu dữ kiện để thành bất phương trình.

6 tháng 4 2017

Ta có: điều kiện xác định của bpt \(x+3-\dfrac{1}{x+7}< -\dfrac{1}{x+7}\)\(x\ne-7\)

\(\Rightarrow x=-7\) không phải là nghiệm của bpt trên

Lại có: \(x+3< 2\\ \Leftrightarrow x< 2-3\\ \Leftrightarrow x< -1\)

\(\Rightarrow x=-7\) thỏa mãn bpt \(x+3< 2\) \(\left(-7< -1\right)\)

10 tháng 5 2017

TXĐ:D=R\{-2;1}

BPT<=>\(\dfrac{\left(x-1\right)^2-\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)

<=>\(\dfrac{-3\left(2x+1\right)}{\left(x-1\right)\left(x+2\right)}\ge0\)

Cho 2x+1=0<=>x=-0,5

cho (x-1)(x+2)=0 <=>x=1 hoặc x=-2

Bảng xét dấu:

x -\(\infty\) -2 -0,5 1 +\(\infty\)

f(x) + kxđ - 0 + kxđ -

=>Tập nghiệm T=(-\(\infty\);-2)\(\cup\)[-0,5;1]

10 tháng 5 2017

mọi x thuộc R thỏa mãn x khác -2;1

15 tháng 4 2017

a) <=>

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).

b) <=>

Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.

11 tháng 3 2020

1 ) \(|\) x+2 \(|\) - \(|\) x-1 \(|\) < x - 3/2

TH1 : x < -2

bpt <=> -x - 2 - ( -x + 1) < x - 3/2

<=> x > -3/2 ( k tm )

TH 2 : -2 \(\le\) x < 1

bpt <=> x + 2 - ( -x+1) < x - 3/2

<=> x < -5/2 (k tm )

TH3 : x \(\ge\) 1

bpt <=> x + 2 - ( x - 1 ) < x - 3/2

<=> x > 9/2 tm

Vậy x > 9/2 .

2 ) x(x - 1)2 \(\ge\) 4 - x

<=> x( x2 - 2x +1 + 1 ) \(\ge\) 4

<=> x3 - 2x2 + 2x - 4 \(\ge\) 0

<=> x2 (x - 2) + 2(x - 2) \(\ge\) 0

<=> (x2 + 2)(x - 2) \(\ge\) 0

Có : x2 + 2 > 0 , với mọi x

=> x - 2 \(\ge\) 0 <=> x \(\ge\) 2 .

Xem thử đúng hay sai ...

9 tháng 3 2020

Hoàng Thị Ánh Phương , Ribi Nkok Ngok, Nguyễn Lê Phước Thịnh, Trần Quốc Khanh, Vũ Minh Tuấn, ?Amanda?, Nguyễn Ngọc Lộc , Trên con đường thành công không có dấu chân của kẻ lười biếng, Bùi Lan Anh , Akai Haruma, @Nguyễn Việt Lâm, ...

5 tháng 4 2017

a) Đkxđ: \(x\ne1,x\ne0\)

x+1x1+2>x1x2x1+2>1xx+1x1+2>x1x2x1+2>1x

2x1+1x+2>02x+x1+2(x2x)(x1)x=2x2+x1(x1)(x)>02x1+1x+2>02x+x1+2(x2x)(x1)x=2x2+x1(x1)(x)>0

Tử {delta =9}

1<x<12T<0

0<x<1M<0

Nghiệm BPT là

[x<10<x<12 hoặc x>1

31 tháng 1 2020

Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.

\(x\left(x-1\right)^2\ge4-x\)

\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)

\(\Leftrightarrow x^3-2x^2+x\ge4-x\)

\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)

\(\Leftrightarrow x\ge2\)

Vậy \(S=\left\{2;+\infty\right\}\)

1 tháng 2 2020

@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:

S = [ 2; \(+\infty\))