
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Để x < 0
=> a - 20 < 0
=> a < 20 (1)
mà a \(\inℕ^∗\)(2)
Từ (1) và (2) => \(a\in\left\{1;2;3;...;19\right\}\)
=> Số phần tử của tập S là : (19 - 1) : 1 + 1 = 19 phần tử

Các tập hợp đó là
{7;8} ; {3;7;8} ; {7;8;9} ; {3;7;8;9}
Vậy có 4 tập hợp S thõa mãn

1. 3/8-1/6.x=1/4
1/6.x=3/8-1/4
1/6.x=1/8
x=1/8:1/6
x=3/4
2. Mảnh vải dài: (3,6:72).100=5 (m)
3. Ư(12) = \(\left\{1;2;3;4;6;12\right\}\)

Đề A thuộc N
=> n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {1 ; 2 ; 4 }
do đó
\(\hept{\begin{cases}n+1=1\\n+1=2\\n+1=4\end{cases}\Rightarrow\hept{\begin{cases}n=0\in N\\n=1\in N\\n=3\in N\end{cases}\Rightarrow}n=\left\{0;1;3\right\}}\)
Bài 2
Kẻ từ 1 điểm đến 9 điểm còn lại ta tạo được 9 đường thẳng
Với 10 điểm như thế ta tạo được 10 . 9 = 90 đường thẳng
Vì mỗi đường thẳng được tính 2 lần
=> số đường thẳng tạo được là 90 : 2 = 45 đường thẳng
Bài 3
Ta có công thức sau
\(\frac{n.\left(n+1\right)}{2}\) Với n là số điểm đã cho trước
Ghép với đề toán đã cho ta có :
\(\frac{n.\left(n+1\right)}{2}=105\)
\(n.\left(n+1\right)=210\)
\(\Rightarrow n=14\)

Để \(x=\frac{a-20}{-3}\) ( a ∈ N* ) nhận giá trị dương
=> a - 20 nhận giá trị âm
=> a nhỏ hơn 20
a) S = { a ∈ N* | a < 20 }
\(S=\left\{...;17;18;19\right\}\)
b) ( Không hiểu đề , thông cảm , bạn làm nốt nhé ! )

\(-1\in Z;-1\in Q\\ \dfrac{7}{123}\in Q\\ 3,05\in Q\\ \dfrac{-2}{3}\in Q\\ 1035\in N;1035\in Z;1035\in Q\)

Ta có :
\(f\left(x\right)=x^6-x^3+x^2-x+1=\left(x^6-x^3+\frac{1}{4}\right)+\left(x^2-x+\frac{1}{4}\right)+\frac{1}{2}\)\(=\left(x^3+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)( \(\ge\)\(\frac{1}{2}\)với mọi x )
Vậy đa thức không có nghiệm trên tập hợp số thực.
thế tập hợp Q đâu cậu?
số đâu