Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x+7⋮x+4\)
\(x\left(x+4\right)+7⋮x+4\)
\(\Rightarrow7⋮x+4\)
=> x + 4 thuộc Ư(7) = { - 7; - 1; 1; 7 }
=> x + 4 = { - 7; - 1; 1; 7 }
=> x = { - 11 ; - 5 ; - 3; 3 }
Ta có: (n2 + n + 4) chia hết cho (n + 1)
=> (n.n + n.1 + 4) chia hết cho (n + 1)
=> [n(n + 1) + 4] chia hết cho (n + 1)
Vì: n(n + 1) chia hết cho (n + 1)
Mà: [n(n + 1) + 4] chia hết cho (n + 1)
=> 4 chia hết cho (n + 1)
=> (n + 1) \(\in\)Ư(4) = {1;2;4}
=> n\(\in\){0;1;3}
Nhớ k cho mình nhé !!!!
3/ bạn lập bảng xét dấu là sẽ thấy có 4 trường hợp:
TH1: x<(-5/6), khi đó: -(2x+1)+[-(3-4x)]+[-(6x+5)]=2014
-2x-1-3+4x-6x-5=2014
-4x-9=2014
x=-2023/4 ( TM x<-5/6)
TH2: -5/6<=x<=-1/2, khi đó: 2x+1+[-(3-4x)]+[-(6x+5)]=2014
2x+1-3+4x-6x-5=2014
0x-7=2014 ( ko có giá trị x TM pt)
TH3:-1/2<=x<=3/4, khi đó: 2x+1+(3-4x)+[-(6x+5)]=2014
2x+1+3-4x-6x-5=2014
-8x-1=2014
x=-2015/8 ( ko TM -1/2<=x<=3/4 )
TH4: x>3/4; khi đó: 2x+1+3-4x+6x+5=2014
4x+9=2014
x=2005/4( TM x>3/4)
thế là xong. cái nào TM thì lấy
ghi chú <= là nhỏ hơn hoặc bằng
x2 + 4x + 7 chia hết cho x + 4
=> x . ( x + 4 ) + 7 chia hết chi x + 4
Do x . ( x + 4 ) chia hết cho x + 4 nên 7 chia hết cho x + 4
=> x + 4 thuộc { 1 ; -1 ; 7 ; -7 }
=> x thuộc { -3 ; -5 ; 3 ; -11 }
Vậy x thuộc { -3 ; -5 ; 3 ; -11 }
Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x
|x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà |x - 3|2 + |x - 3| = 0
Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
a) (x+5)+(x+10)+.........+(x+60)=450
12x +(5+10+.........+60)=450
12x+390=450
12x=60
x=5
b) Gọi n là thương của phép chia a cho 54; =>54n+38=252+r =>r-2 chia hết cho 54
r là dư của phép chia a cho 18 (n,r thuộc N;r<14) =>54n =214+r =>r-2=0
=>a=54n + 38 =>n=(214+r):54 =>r =2
a=18x14+r =>214+r chia hết cho 54 =>a=18x14+2=254
=>54n+38=18x14+r =>216+r-2 chia hết cho 54
a) Ta có \(x+4=(x+1)+3\)
nên \((x+4)\) \(⋮\left(x+1\right)\) khi \(3⋮\left(x+1\right)\) , tức là \(x+1\) là ước của 3
Vì Ư(3) = { \(-1;1;-3;3\) }
Ta có bảng
\(x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(-2\) | \(0\) | \(-4\) | \(2\) |
b) Ta có : \(4x+3=4(x-2)+11\)
nên \(\left(4x+3\right)⋮\left(x-2\right)\) khi \(11⋮\left(x-2\right)\) , tức là \((x-2) \) là ước của 11
( Làm tương tự thôi phần a) )
\(\Rightarrow x\in\left\{-9;1;3;13\right\}\)
x2 + 4x + 13 chia hết cho x + 4
=> [(x2 + 4x + 13) - x.(x+4)] chia hết cho x + 4
=> x2 + 4x + 13 - x2 - 4x chia hết cho x + 4
=> 13 chia hết cho x + 4
=> x + 4 thuộc Ư(13) = {-13; -1; 1; 13}
=> x thuộc {-17; -5; -3; 9}
Vậy...có 4 phần tử.
100% . 4