Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)<0\)
suy ra hai số này là trái dấu vậy một số là dương và mootj số là âm
mà \(\left(x+\frac{5}{4}\right)>\left(x-\frac{9}{7}\right)\)
suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm
x+5/4>0suy ra x>0-5/4 suy ra x>-5/4
x-9/7<0 suy ra x<9/7+0 suy ra x<9/7
-5/4<x<9/7
\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)
Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)
Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.
Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như \(x\le-1\)
Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)
Khi đó minP = 2 khi x = -1, y = -1.
Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.
Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)
Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)
Vậy \(minP=3\) khi \(x=1\Rightarrow y=2\)
Tóm lại \(minP=2\) khi x = -1, y = -1.
\(\left(x+2\right)^4-4.\left(x+2\right)^2=0\)
\(\left(x+2\right)^2.\left[\left(x+2\right)^2-4\right]=0\)
\(\Rightarrow\left(x+2\right)^2=0\)hoặc \(\left(x+2\right)^2-4=0\)
\(x+2=0\)hoặc \(\left(x+2\right)^2=4\)
\(x=-2\)hoặc \(x+2=2\)hoặc \(x+2=-2\)
\(x=-2\)hoặc \(x=0\) hoặc \(x=-4\)
yugi sắp có phim mới rùi hay lém
tên của nó hình như là yugioh: dark ò the gì gì đó
**** nha
x=3,có thể x=0;1 theo mình nghĩ lad thế