Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi V la` can bac hai , abs la` gia tri tuyet doi
ta co P=V((x^3+3)^2/x^2) + V(x-2)^2 =abs((x^3+3)/x)+abs(x-2)
do x thuoc Z nen abs(x-2) thuoc Z
vay de~ P thuoc Z thi` (x^3+3) chia het cho x
=>x thuoc uoc cua 3
=>X={-3;-1;1;3} =>S={5;11;13}
câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
ta thấy \(\sqrt{x}+1>=1\)
=> \(\left(\sqrt{x}+1\right)^2>=1\)
=> GTNN =1 khi x=0
bài 6: |x-1|=x+1
TH1: x-1=x+1<=> 0x=2 vô nghiệm
TH2: x-1=-1-x
<=> 2x=0<=> x=0
vậy tập nghiệm S={0}
câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0
pt<=> \(x^2+3=4x\)
<=> x=3 hoặc x=1
vậy tập nghiệm S={1;3}
câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)
điều kiện x>=2
đặt \(\sqrt{x-2}=a\)>=0
=> pt có dạng a(2a-3)=4a2-9
<=> 2a2+3a-9=0
<=> a=-3 (loại) hoặc a=3/2
thya vào rồi giải: x-2=9/4
=> a=17/4 (thỏa )
các câu khác tương tự
Giải:
Từ \(\left(P\right)\) và \(\left(d\right)\) ta có:
\(x^2=mx-m+1\)
\(\Leftrightarrow-x^2+mx-m+1=0\)
\(\Leftrightarrow\Delta=m^2-4m+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+\sqrt{m^2-4m+1}}{-2}\\x_2=\dfrac{-m-\sqrt{m^2-4m+1}}{-2}\end{matrix}\right.\)
Mà \(x_1=2x_2\)
\(\Leftrightarrow\dfrac{-m+\sqrt{m^2-4m+1}}{-2}=\dfrac{-2m-2\sqrt{m^2-4m+1}}{-2}\)
Rút gọn đẳng thức trên ta thu được:
\(3\sqrt{m^2-4m+1}+m=0\)
Chuyển \(m\) sang vế phải và bình phương cả hai vế ta thu được:
\(9m^2-36m+9=m^2\)
\(\Leftrightarrow8m^2-36m+9=0\)
Giải phương trình ta thu được 2 nghiệm của \(m\)
Vậy \(m\) có hai phần tử
\(A=a^2+a+3=\dfrac{\left(2a+1\right)^2+11}{4}\)
\(B=\sqrt{A}=\dfrac{1}{2}\sqrt{\left(2a+1\right)^2+11}\)
để B có giá trị huu tỷ \(C=\left(2a+1\right)^2+11=k^2\Rightarrow k^2-\left(2a+1\right)^2=11\)
\(\Rightarrow\left|2a+1\right|=5\Rightarrow\left[\begin{matrix}a=2\\a=-3\end{matrix}\right.\)
C=(2a+1)2+11=k2(k\(\in\)Z)
=> k2-(2a+1)2=11=>(k-2a-1)(k+2a+1)=1.11=-1.-11
TH1:k-2a-1=1 V k+2a+1=11=>a=2
TH2:k-2a-1=-11 V k+2a+1=-1=>a=2
TH3:k-2a-1=11 V k+2a+1=1 =>a=-5/2(loại)
TH4:k-2a-1=-1 V k+2a+1=-11=>a=-5/2(loại)