K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Đáp án D

8 tháng 4 2019

Chọn B

Điều kiện để đồ thị có tiệm cận: m ≠ - 3  

Tâm đối xứng I(1;-m) là giao điểm của hai đường tiệm cận.

Khi đó, I ∈ d ⇔ m = - 3  (loại). Vậy không tồn tại m thỏa mãn.

21 tháng 11 2018

6 tháng 10 2019

Đáp án A

Ta có lim x → + ∞ y = lim x → − ∞ y = 1  nên đồ thị hàm số chỉ có duy nhất đường TCN  y = 1

5 tháng 12 2017

Đáp án C

Phương pháp :

+)  Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2

y = f’(m – 2)(x – m +2)+y(m – 2) (d)

+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1

+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.

Cách giải: TXĐ: D = R\ {–2}

Ta có 

=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là: 

Đồ thị hàm số  y = x - 1 x + 2  có đường TCN y = 1và tiệm cậm đứng x = –2

18 tháng 7 2017

Đáp án C

Dễ thấy với m < 0 thì hàm không có tiệm

cận ngang vì x không tiến đến ∞

Với m = 0, hàm có dạng y = x + 1 và cũng

không có tiệm cận ngang

Với m > 0, ta có:

Xét  lim x → + ∞ x + 1 m x 2 + 1 = lim x → + ∞ 1 + 1 x m + 1 x = 1 m

Lại có  lim x → - ∞ x + 1 m x 2 + 1 = lim x → - ∞ 1 + 1 x - m + 1 x = 1 - m

⇒ Hàm có 2 tiệm cận ngang

9 tháng 6 2019

Đáp án A

Ta có: lim x → + ∞ y = 0 ⇒  đồ thị hàm số có 1 tiệm cận ngang là y = 0 .

Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0  có 2 nghiệm phân biệt

x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.  

11 tháng 8 2019

Đáp án là D.

Đồ thị hàm số có bốn đường tiệm cận khi phương trình   m 2 x 2 + m − 1 = 0 có hai nghiệm phân biệt khác  -1 ⇔ m 2 ≠ 0 − m 2 m − 1 > 0 ⇔ m ≠ 0 m < 1 .

18 tháng 10 2019

T=3

Đáp án D