Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Số cách chọn 4 học sinh bất kì: \(C_{12}^4\)
Số cách chọn 4 học sinh có mặt đủ 3 lớp:
\(C_5^2.C_4^1.C_3^1+C_5^1.C_4^2.C_3^1+C_5^1.C_4^1.C_3^2\)
Số cách chọn thỏa mãn yêu cầu:
\(C_{12}^4-\left(C_5^2.C_4^1.C_3^1+C_5^1.C_4^2.C_3^1+C_5^1.C_4^1.C_3^2\right)\)
2/ Số tập con có 2 phần tử: \(C_n^2\)
Số tập con có 4 phần tử: \(C_n^4\)
\(C_n^4=20C_n^2\Leftrightarrow\frac{n!}{\left(n-4\right)!.4!}=\frac{20n!}{\left(n-2\right)!.2!}\)
\(\Leftrightarrow\left(n-2\right)\left(n-3\right)=\frac{20.4!}{2!}=240\)
\(\Leftrightarrow n^2-5n-234=0\Rightarrow n=18\)
3/ Từ 10 chữ số {0;1;...;9} có \(C_{10}^3\) cách chọn bộ 3 số tự nhiên phân biệt
Với mỗi bộ số có duy nhất 1 cách sắp xếp thỏa mãn \(a>b>c\)
Vậy có \(C_{10}^3\) chữ số thỏa mãn
Đáp án B
Số cách chọn ra hai phần tử của M
và sắp xếp hai phần tử đó là số chỉnh hợp chập 2 của 10 phần tử và bằng A 10 2
Đáp án C
Ta tìm số cặp số (a;b) thoả mãn
Có 49 cặp (a;b) thỏa mãn. Do đó S gồm 49 phần tử:
Ta tìm số cặp (a;b) thoả mãn
Do đó
Vậy có 4 cặp số (a;b)có tổng bằng 100 và tích của chúng là một số chính phương.
Số tập con có hai phần tử của A là: \(C_{90}^2=4005\)
Không gian mẫu: chọn 2 tập từ 4005 tập có \(C_{4005}^2\) cách
Trung bình cộng cách phần tử trong mỗi tập bằng 30 \(\Rightarrow\) tổng 2 phần tử của mỗi tập là 60
Ta có các cặp (1;59); (2;58);...;(29;31) tổng cộng 29 cặp (đồng nghĩa 29 tập thỏa mãn)
Chọn 2 tập từ 29 tập trên có \(C_{29}^2\) cách
Xác suất: \(P=\dfrac{C_{29}^2}{C_{4005}^2}=A\)
Chọn C
Số tập hợp con gồm k phần tử của tập n phần tử là: C n k => Số tập hợp con gồm 2 phần tử của tập hợp M là C 10 2 .
Câu 1:
Đồng tiền có 2 mặt S, N, xúc xắc có 6 mặt \(\Rightarrow\) không gian mẫu có \(2.6=12\) phần tử
Câu 2:
Mỗi lần gieo có 6 khả năng kết quả \(\Rightarrow\) 2 lần gieo có \(6^2=36\) khả năng
Câu 3:
\(\left(6;1\right);\left(6;2\right);\left(6;3\right);\left(6;4\right);\left(6;5\right);\left(6;6\right)\)
Câu 4:
Có đúng 1 phần tử là SN (hoặc NS) nếu ko quan tâm thứ tự gieo
Câu 5:
Có 3 biến cố : SS; NN; SN (và thêm NS nếu có quan tâm đến thứ tự gieo)
Câu 6:
Các phần tử của biến cố A: \(\left(1;2;3\right);\left(1;2;4\right)\) có đúng 2 phần tử
Câu 7:
Không gian mẫu: \(C_{10}^3\)
Số cách chọn 3 em mà không có em nữ nào: \(C_6^3\)
Số cách chọn có ít nhất 1 nữ: \(C_{10}^3-C_6^3\)
Xác suất: \(P=\frac{C_{10}^3-C_6^3}{C_{10}^3}\)
Câu 8:
Không gian mẫu: \(C_9^2\)
Số cách chọn 2 bi khác màu: \(C_5^1.C_4^1\)
Xác suất: \(P=\frac{C_5^1.C_4^1}{C_9^2}\)
Câu 9:
Câu 9 không thấy hỏi cần tính gì?
Câu 10:
Không gian mẫu \(6^2=36\)
Các phần tử của biến cố A: \(\left(1;6\right);\left(2;5\right);\left(3;4\right)\) có 3 phần tử
Xác suất: \(P=\frac{3}{36}=\frac{1}{12}\)
Câu 11:
Không gian mẫu: \(2^3=8\)
Các phần tử biến cố A: \(\left(NNS\right)\)
Xác suất: \(P=\frac{1}{8}\)
Chọn C
Ta có tập A gồm 5 số chẵn và 5 số lẻ. Do đó số cách chọn ra 2 phần tử gồm 1 phần tử chẵn và 1 phần tử lẻ là ( C 1 5 ) 2