K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

5sin2x-12 (sinx-cosx) + 12 = 0

10sinxcosx-12sinx + 12cosx + 12 = 0

-5 (sinx-cosx) ²-12 (sinx-cosx) + 17 = 0

-5 (sinx-cosx) ²-17 (sinx-cosx) +5 (sinx-cosx) + 17 = 0

(5 (sinx-cosx) +17) (- (sinx-cosx) +1) = 0

sinx-cosx = 1 hoặc sinx-cosx = -17 / 5

1B

2A

3A

4C

31 tháng 5 2021

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

NV
19 tháng 9 2021

3.

\(\dfrac{1}{2}-\dfrac{1}{2}cos2x-3cos2x-2=0\)

\(\Leftrightarrow-7cos2x-3=0\)

\(\Rightarrow cos2x=-\dfrac{3}{7}\)

\(\Rightarrow2x=\pm arccos\left(-\dfrac{3}{7}\right)+k2\pi\)

\(\Rightarrow x=\pm\dfrac{1}{2}arccos\left(-\dfrac{3}{7}\right)+k\pi\)

4.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(tanx+2tanx=0\)

\(\Rightarrow3tanx=0\)

\(\Rightarrow tanx=0\)

\(\Rightarrow x=k\pi\) (loại do ĐKXĐ)

Vậy pt đã cho vô nghiệm

NV
19 tháng 9 2021

1.

\(\Leftrightarrow1-sin^2x+sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1+\sqrt{5}}{2}>1\left(loại\right)\\sinx=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\pi\\x=\pi-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\) (\(k\in Z\))

2.

\(2cos^2x-\left(2cos^2x-1\right)+cosx=0\)

\(\Leftrightarrow cosx+1=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\) (\(k\in Z\))

14 tháng 2 2019

Chọn C

Bổ trợ kiến thức: Ta có thế gii bng máy tính cm tay CASIO fx-570VN PLUS như sau, đu tiên dùng lệnh SHIFT SOLVE để xem 1 nghiệm bất kì có th có ca phương trình đã cho:

Tiếp theo ta tính cos x thì dễ thấy được:

Đến đây ta d dàng chọn được phương án C là phương án đúng thay cho lời giải t luận nhiều phức tạp.

19 tháng 9 2017

hộ vs ae ơi

NV
16 tháng 10 2020

1.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

Pt trở thành:

\(t^3+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow2t^3+t^2-3=0\)

\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
16 tháng 10 2020

4.

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)

Pt trở thành:

\(t^3=1+\frac{1-t^2}{2}\)

\(\Leftrightarrow2t^3+t^2-3=0\)

\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

9 tháng 5 2022

\(y=sinx\Rightarrow y'=cosx;y''=-sinx;y'''=-cosx\)

Bằng quy nạp toán học ; ta c/m được : \(y^{\left(n\right)}sinx=sin\left(x+n\dfrac{\pi}{2}\right)\)