Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(sin2x\ne0\)
Ta có: \(VT=tan^2x+cot^2x=\left(tanx-cotx\right)^2+2\ge2\)
Lại có \(cos^2\left(3x+\frac{\pi}{4}\right)\le1\) ;\(\forall x\Rightarrow VP=1+cos^2\left(3x+\frac{\pi}{4}\right)\le2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}tanx=cotx\\cos^2\left(3x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}tanx=tan\left(\frac{\pi}{2}-x\right)\\sin\left(3x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{2}-x+k\pi\\3x+\frac{\pi}{4}=k\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
a. ĐKXĐ: ...
\(1+cot^2x=\frac{2}{tanx}\)
\(\Leftrightarrow1+cot^2x=2cotx\)
\(\Leftrightarrow\left(cotx-1\right)^2=0\Leftrightarrow cotx=1\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
b. ĐKXĐ: ...
\(cosx\left(\frac{sinx}{cosx}+2cosx\right)-2=0\)
\(\Leftrightarrow sinx+2cos^2x-2=0\)
\(\Leftrightarrow sinx-2\left(1-cos^2x\right)=0\)
\(\Leftrightarrow sinx-2sin^2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)
2.
\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)
4.
\(cos3x+cosx+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
5.
\(sin6x+sin2x+sin4x=0\)
\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)
\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
6. ĐKXĐ; ...
\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)
\(\Leftrightarrow tan3x=1\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
e.
\(3\left(1-sin^2x\right)-5sinx-1=0\)
\(\Leftrightarrow-3sin^2x-5sinx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
f.
\(2\left(2cos^2x-1\right)-cosx+7=0\)
\(\Leftrightarrow4cos^2x-cosx+5=0\)
Phương trình vô nghiệm
g.
\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)
Phương trình vô nghiệm
h.
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
a/ \(y'=6sinx.cosx.sin3x+9sin^2x.cos3x\)
b/ \(y'=-\frac{2\left(1+cotx\right)}{sin^2x}\)
c/ \(y'=-sin^3x+2sinx.cos^2x\)
d/ \(y'=\frac{tanx}{cos^2x\sqrt{2+tan^2x}}\)
Do \(\alpha\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow sin\alpha>0;cos\alpha< 0;tan\alpha< 0\)
\(\frac{tana}{cota}=\frac{\sqrt{5}-1}{\sqrt{5}+1}\Leftrightarrow tan^2a=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{\left(\sqrt{5}-1\right)^2}{4}\Rightarrow tana=\frac{1-\sqrt{5}}{2}\Rightarrow cota=\frac{-1-\sqrt{5}}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{5+\sqrt{5}}{10}\)
\(\Rightarrow sin^2a=1-cos^2a=\frac{5-\sqrt{5}}{10}\)
\(sin2a=2sina.cosa=2tana.cos^2a=-\frac{2\sqrt{5}}{5}\)
Thay vào ta được:
\(P=...\)
Bạn tự thay số và bấm máy
\(\Leftrightarrow tan^2x-2+cot^2x+\frac{2}{tan2x}=0\)
\(\Leftrightarrow\left(tanx-cotx\right)^2+\frac{1-tan^2x}{tanx}=0\)
\(\Leftrightarrow\left(\frac{1-tan^2x}{tanx}\right)^2+\frac{1-tan^2x}{tanx}=0\)
\(\Leftrightarrow t^2+t=0\)