Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\sin^240^0}{\cos^240^0}\cdot\cos^240^0-3+1-\sin^240^0=\sin^240^0-\sin^240^0-2=-2\)
b) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-6\cdot\dfrac{4}{\sqrt{3}}\)
\(=1-8\sqrt{3}\)
a: \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}\)
\(=-5\sqrt{5}\)
b: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-8\sqrt{3}\)
\(=-8\sqrt{3}+1\)
\(=tan^240^0\cdot cos^240^0-3+1-sin^240^0\)
\(=sin^240^0-sin^240^0-2\)
=-2
a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)
b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)
= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)
= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)
= \(1+1=2\)
a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.
vd: \(sin30^o=cos70^o\)
b) Gợi ý: \(sin^2+cos^2=1\)
Ta có: \(\tan^240^0\cdot\sin^250^0-3+\left(1-\sin40^0\right)\left(1+\sin40^0\right)\)
\(=\tan^240^0\cdot\cos^240^0-3+1-\sin^240^0\)
\(=-2\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
Ta có: \(\tan^240^0\cdot\sin^250^0-3+\left(1-\sin40^0\right)\left(1+\sin40^0\right)\)
\(=\sin^240^0-3+1-\sin^240^0\)
=-2