K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

\(tan^22x-4tan2x=0\)

\(\Leftrightarrow tan2x\left(tan2x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tan2x=0\\tan2x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=arctan4+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{1}{2}arctan4+\dfrac{k\pi}{2}\end{matrix}\right.\)

17 tháng 9 2021

\(tan^22x-4tan2x=0\)

\(tan2x\left(tan-4\right)=0\)

Tham khảo tại 

Tìm số nghiệm của phương trình trên khoảng (-π; π): 2(sinx + 1)(sin^22x - 3sinx + 1) = sin4x.cosx - Toán học Lớp 11 - Bài tập Toán học Lớp 11 - Giải bài tập Toán học Lớp 11 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

_ Minh ngụy _

4 tháng 7 2019

2(sinx+1)( (sin2x)^2-3sinx+1 )= sin4x.cosx 
<>2(sinx+1)( (sin2x)^2-3sinx+1 )= 4cos2xsinx.(1-sinx)(1+sinx) 
+ sinx +1 =0 <>... 
+ (sin2x)^2 - 3sinx + 1 = 2cos2xsinx.(1-sinx) 
<>(sin2x)^2 - 3sinx + 1 = (sin3x - sinx)(1-sinx) 
<>(sin2x)^2 - 2sinx +cos^2x = sin3x - sin3xsinx 
<>1 - cos4x - 4sinx + 1 + cos2x = 2sin3x - (cos2x - cos4x) 
<>cos4x - cos2x + sin3x - 1 = 0 
<>-2sin3xsinx + sin3x - 1 =0 
đặt sinx = t => pt bậc 4 
8t^4 + 12t^3 + 2t^2 + t + 1 =0 
<> t =-1/2
Đến đây thay t = sinx rồi ép khoảng nghiệm

17 tháng 9 2021

\(sin^2x+sin^22x=1\)

\(\Leftrightarrow2sin^2x-1+2sin^22x-2=-1\)

\(\Leftrightarrow-cos2x-2cos^22x+1=0\)

\(\Leftrightarrow\left(cos2x+1\right)\left(2cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

1 tháng 10 2021

a

\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)

\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)

\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)

Tới đây thôi, mình lười ghi rồi =))

b

\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)

\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)

\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)

\(\Leftrightarrow4cos^22x+3=0\)

=> pt vô nghiệm

1 tháng 10 2021

Mình cảm mơn nhiều nha :3

 

NV
21 tháng 1 2021

Bạn xem lại đề bài

28 tháng 9 2021

a, \(cos2x+4cosx+1=0\)

\(\Leftrightarrow2cos^2x+4cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+2\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

28 tháng 9 2021

b, \(cos^22x=\dfrac{1}{4}\)

\(\Leftrightarrow4cos^22x-1=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow cosx=\pm\dfrac{1}{2}\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k\pi\)

12 tháng 7 2021

1.

\(2cos4x-3=0\)

\(\Leftrightarrow cos4x=\dfrac{3}{2}\)

Mà \(cos4x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

2.

\(cos5x+2=0\)

\(\Leftrightarrow cos5x=-2\)

Mà \(cos5x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

12 tháng 7 2021

3.

\(cos2x+0,7=0\)

\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)

\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)

4.

\(cos^22x-\dfrac{1}{4}=0\)

\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
21 tháng 3 2023

\(\Leftrightarrow2cos4x\left(cos2x-sin2x\right)=0\)

\(\Leftrightarrow cos4x=0\) (do \(cos4x=cos^22x-sin^22x\) đã bao hàm \(cos2x-sin2x\))

\(\Rightarrow4x=\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

NV
10 tháng 7 2021

\(\Leftrightarrow2sin^3x+1-sin^2x-1=0\)

\(\Leftrightarrow sin^2x\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)